Original H&E | Heatmap of Tumor Probability |
---|---|
🔥 🚀 Blazingly fast pipeline to run patch-based classification models on whole slide images.
See https://wsinfer.readthedocs.io for documentation.
WSInfer will install PyTorch automatically if it is not installed, but this may not install GPU-enabled PyTorch even if a GPU is available. For this reason, install PyTorch before installing WSInfer. Please see PyTorch's installation instructions for help install PyTorch.
python -m pip install wsinfer
To use the bleeding edge, use
python -m pip install git+https://github.com/SBU-BMI/wsinfer.git
Clone this GitHub repository and install the package (in editable mode with the dev
extras).
git clone https://github.com/SBU-BMI/wsinfer.git
cd wsinfer
python -m pip install --editable .[dev]
When ready to cut a new release, follow these steps:
-
Update the base image versions Dockerfiles in
dockerfiles/
. Update the version to the version you will release. -
Commit this change.
-
Create a tag, where VERSION is a string like
v0.3.6
:git tag -a -m 'wsinfer version VERSION' VERSION
-
Build wheel:
python -m build
-
Create a fresh virtual environment and install the wheel. Make sure
wsinfer --help
works. -
Push code to GitHub:
git push --tags
-
Build and push docker images:
bash scripts/build_docker_images.sh 0.3.6 1
-
Push wheel to PyPI:
twine upload dist/*