-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlatent_iadb_bn_diffusers.py
720 lines (551 loc) · 28.7 KB
/
latent_iadb_bn_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import argparse
import inspect
import logging
import math
import os
import shutil
from datetime import timedelta
from pathlib import Path
import accelerate
import torch
import torch.nn.functional as F
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import ProjectConfiguration
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm
import diffusers
from diffusers import UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from diffusers import AutoencoderKL
import torchvision
import numpy as np
from PIL import Image
import platform
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import matplotlib.pyplot as plt
import random
import sys
sys.path.append('../')
from bluenoise.get_noise_recent import get_noise_v2
from input_args import parse_args
import lmdb
args = parse_args()
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) # a big number for high resolution or big dataset
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.logger,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
dimension = 3
cov_mat_L = np.load('bluenoise/cov_gaussianBN_L_res{:}_d{:}.npz'.format(64, dimension))['x'].astype(np.float32)
if args.noise_type in ['gaussianRN']:
cov_mat_L = np.load('bluenoise/cov_gaussianRN_L_res{:}_d{:}.npz'.format(64, dimension))['x'].astype(np.float32)
cov_mat_L = torch.from_numpy(cov_mat_L).to(accelerator.device)
generator = torch.Generator(device=accelerator.device).manual_seed(seed)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
vae = vae.eval().to(accelerator.device).half()
class IADBScheduler(SchedulerMixin, ConfigMixin):
"""
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
"""
def __init__(self, num_train_timesteps: int = 1000):
super().__init__()
self.num_train_timesteps = num_train_timesteps
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
x_alpha: torch.FloatTensor,
) -> torch.FloatTensor:
"""
backward
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# print('timestep:', timestep, self.num_inference_steps)
alpha = (timestep + 1) / self.num_inference_steps
alpha_next = (timestep) / self.num_inference_steps
gamma = (timestep + 1) / self.num_inference_steps
gamma_next = (timestep) / self.num_inference_steps
d = model_output
if args.noise_type in ['gaussianBN', 'gaussianRN']:
if args.out_channels == 4:
x_alpha = x_alpha + (alpha - alpha_next) * d
elif args.out_channels == 8:
# print('t:', timestep, gamma - gamma_next)
x_alpha = x_alpha + (alpha - alpha_next) * d[:, :4, :, :] + (gamma - gamma_next) * d[:, 4:, :, :]
else:
raise NotImplementedError
elif args.noise_type in ['gaussian']:
x_alpha = x_alpha + (alpha - alpha_next) * d
else:
raise NotImplementedError
return x_alpha
def set_timesteps(self, num_inference_steps: int):
self.num_inference_steps = num_inference_steps
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
alpha: torch.FloatTensor,
) -> torch.FloatTensor:
"""
forward
"""
# return original_samples * alpha.view(-1, 1, 1, 1) + noise * (1 - alpha.view(-1, 1, 1, 1))
return (1 - alpha).view(-1, 1, 1, 1) * original_samples + alpha.view(-1, 1, 1, 1) * noise
def __len__(self):
return self.num_train_timesteps
class IADBPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
def vae_encode(image_t: torch.Tensor) -> torch.Tensor:
image_t = image_t.to(device=accelerator.device, dtype=torch.float16).mul(2).sub(1)
with torch.no_grad():
latent_dist = vae.encode(image_t).latent_dist
latents = latent_dist.sample(generator=generator)
latents = 0.18215 * latents
if False:
plt.figure(1)
for i in range(4):
plt.subplot(1, 4, i+1)
latents_plot = latents[0, i].detach().cpu().numpy()
# latents_plot = (latents_plot - latents_plot.min()) / (latents_plot.max() - latents_plot.min())
print('latents:', latents_plot.shape, latents_plot.min(), latents_plot.max())
plt.imshow(latents_plot)
plt.show()
return latents
def vae_decode(latents: torch.Tensor) -> Image.Image:
latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(latents.half()).sample
# image = (image*0.5 + 0.5).clamp(0, 1)
# return torchvision.transforms.functional.to_pil_image(image[0])
return image
def images_to_latents(lmdb_path: str, folder: str, resolution: int=512):
image_paths = [os.path.join(root, file) for root, _, files in os.walk(folder) for file in files
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff', '.webp'))]
transform = transforms.Compose([transforms.Resize(resolution), transforms.CenterCrop(resolution)])
# 2x for hflip, 2 bytes per float16
max_size = int(1.5 * len(image_paths) * 2 * (4*64*64) * 2)
env = lmdb.open(lmdb_path, map_size=max_size)
with env.begin(write=True) as txn:
for i, image_path in enumerate(tqdm(image_paths)):
image = Image.open(image_path).convert('RGB')
image = transform(image)
for f in range(2):
latent = vae_encode(torchvision.transforms.functional.to_tensor(image).unsqueeze(0))
if False:
img = np.asarray(vae_decode(latent).convert('RGB')) / 255.0
print('img:', img.shape, img.min(), img.max())
plt.figure(1)
plt.subplot(1, 2, 1)
plt.imshow(img)
plt.subplot(1, 2, 2)
plt.imshow(image)
plt.show()
txn.put(str(i*2+f).encode('utf-8'), latent.cpu().numpy().tobytes())
image = transforms.functional.hflip(image)
env.close()
class LatentsDataset(torch.utils.data.Dataset):
def __init__(self, lmdb_path: str, resolution: int=512):
self.latents = []
env = lmdb.open(lmdb_path, readonly=True)
stats = env.stat()
num_entries = stats['entries']
with env.begin() as txn:
for index in tqdm(range(num_entries), desc="Loading latents"):
buffer = txn.get(str(index).encode('utf-8'))
tensor = torch.from_numpy(np.frombuffer(buffer, dtype=np.float16))
latents = tensor.view(4, resolution//8, resolution//8)
self.latents.append(latents)
env.close()
print(f"Loaded {len(self.latents)} latents")
def __len__(self):
return len(self.latents)
def __getitem__(self, idx):
return self.latents[idx]
def main():
DATA_FOLDER = './data/{:}'.format(args.dataset_name)
lmdb_path = 'data/{:}_latent_lmdb'.format(args.dataset_name)
first_time = False # False, True
if first_time:
images_to_latents(lmdb_path, DATA_FOLDER)
# Preprocessing the datasets and DataLoaders creation.
augmentations = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
# dataset = torchvision.datasets.ImageFolder(root=DATA_FOLDER, transform=augmentations)
dataset = LatentsDataset(lmdb_path, args.resolution)
args.output_dir = args.output_dir + '_{:}'.format(args.noise_type)
if args.use_ema:
args.output_dir = args.output_dir + '_ema'
args.output_dir = os.path.join('results_gaussianBN', args.output_dir)
# local debug
# if platform.system() == "Windows":
# args.train_batch_size = 2
# args.eval_batch_size = 2
if args.noise_type in ['gaussianBN', 'gaussianRN']:
args.out_channels *= 2
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
ema_model.load_state_dict(load_model.state_dict())
ema_model.to(accelerator.device)
del load_model
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Initialize the model
if args.model_config_name_or_path is None:
if args.resolution == 64:
block_out_channels=(128, 128, 256, 256, 512, 512)
down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D")
up_block_types=("UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D")
elif args.resolution in [128]:
block_out_channels=(128, 128, 128, 256, 256, 512, 512)
down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D")
up_block_types=("UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D")
# newly updated
elif args.resolution in [256]:
# block_out_channels=(128, 128, 128, 256, 256, 512, 512)
# down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D")
# up_block_types=("UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D")
block_out_channels=(128, 256, 256)
down_block_types=("DownBlock2D", "DownBlock2D", "AttnDownBlock2D")
up_block_types=("AttnUpBlock2D", "UpBlock2D", "UpBlock2D")
elif args.resolution in [512]:
block_out_channels=(128, 128, 256, 256, 512, 512)
down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D")
up_block_types=("UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D")
else:
raise ValueError(f"Unsupported resolution: {args.resolution}")
model = UNet2DModel(
sample_size=args.resolution,
in_channels=4,
out_channels=args.out_channels,
layers_per_block=2,
block_out_channels=block_out_channels,
down_block_types=down_block_types,
up_block_types=up_block_types
)
else:
config = UNet2DModel.load_config(args.model_config_name_or_path)
model = UNet2DModel.from_config(config)
# Create EMA for the model.
if args.use_ema:
ema_model = EMAModel(
model.parameters(),
decay=args.ema_max_decay,
use_ema_warmup=True,
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
model_cls=UNet2DModel,
model_config=model.config,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
args.mixed_precision = accelerator.mixed_precision
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
args.mixed_precision = accelerator.mixed_precision
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
# if xformers_version == version.parse("0.0.16"):
# logger.warn(
# "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
# )
model.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
noise_scheduler = IADBScheduler(num_train_timesteps=args.ddpm_num_steps)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers, drop_last=True)
# Initialize the learning rate scheduler
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs),
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
if args.use_ema:
ema_model.to(accelerator.device)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
max_train_steps = args.num_epochs * num_update_steps_per_epoch
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
if args.train_or_test == 'test':
print('===> Start testing!')
# load model and scheduler
if not os.path.exists(args.output_dir + '/images'):
os.makedirs(args.output_dir + '/images', exist_ok=True)
if not os.path.exists(args.output_dir + '/seqs'):
os.makedirs(args.output_dir + '/seqs', exist_ok=True)
# run pipeline in inference (sample random noise and denoise)
# image = pipe(eta=0.0, num_inference_steps=1000)
# unet = accelerator.unwrap_model(model)
# pipeline = DDIMPipeline(unet=unet, scheduler=noise_scheduler).from_pretrained(args.output_dir)
# pipeline = DDIMPipeline.from_pretrained(args.output_dir).to(accelerator.device)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print('device:', device)
scheduler = IADBScheduler.from_pretrained(args.output_dir+"/scheduler")
scheduler.set_timesteps(args.ddpm_num_inference_steps)
model = UNet2DModel.from_pretrained(args.output_dir+"/unet", use_safetensors=True).to(accelerator.device)
# model = torch.nn.DataParallel(model)
model.eval()
path = '../iadb/results_gaussianBN_adamw_v4_submitted/{:}_gaussian_linear_outc3_seed0/{:}_iadb_gwn_steps250'.format(args.dataset_name, args.dataset_name)
cnt = 0
num_batch = int(args.test_samples // args.eval_batch_size)
for i in tqdm(range(num_batch)):
# images = pipeline(batch_size=args.eval_batch_size, num_inference_steps=args.ddpm_num_inference_steps).images
# images = (images * 255).round().astype("uint8")
# noise = torch.randn((args.eval_batch_size, 4, (args.resolution//8), (args.resolution//8))).to(device)
noise = np.random.randn(args.eval_batch_size, 4, (args.resolution//8), (args.resolution//8)).astype(np.float32)
# just to reproduce figure 9
if True:
if i == 0:
shown_image_idx = [2, 7, 31, 48]
noise = noise[shown_image_idx]
elif i == 1:
shown_image_idx = [6]
noise = noise[shown_image_idx]
else:
continue
# noise = np.load(path + '/noise/noise_batch{:}_idx{:0>5}.npz'.format(args.eval_batch_size, i))['noise']
noise = torch.from_numpy(noise).to(device)
# print('noise:', noise.shape)
x_alpha = noise
# seqs = [noise[0:1]]
seqs = []
num_steps = scheduler.num_inference_steps
for t in reversed(list(range(0, num_steps))):
alpha = (t + 1) / num_steps
with torch.no_grad():
# print('alpha:', t, num_steps, alpha)
model_output = model(x_alpha, torch.tensor(alpha, device=x_alpha.device), return_dict=False)[0]
x_alpha = scheduler.step(model_output, t, x_alpha)
if t == 0:
x_recon = vae_decode(x_alpha)
# print('x_recon:', x_recon.shape)
seqs.append(x_recon[0:1])
# print('seqs:', len(seqs))
# print('x_alpha:', x_alpha.shape, x_alpha.min(), x_alpha.max())
images = (x_recon / 2.0 + 0.5).clamp(0, 1)
images = (images.permute(0, 2, 3, 1) * 255).round().to(torch.uint8).cpu().numpy()
# print('images:', images.shape)
if False:
for i, image in enumerate(seqs):
if i == len(seqs) - 1:
seq = (seqs[i] / 2 + 0.5).clamp(0, 1)
seq = (seq.permute(0, 2, 3, 1) * 255).round().to(torch.uint8).cpu().numpy()
# print('seq1:', seq.shape, seq.min(), seq.max())
else:
seq = seqs[i]
seq = (seq - seq.min()) / (seq.max() - seq.min())
seq = (seq.permute(0, 2, 3, 1) * 255).round().to(torch.uint8).cpu().numpy()
# image = (image / 2 + 0.5).clamp(0, 1)
# image = (image.permute(0, 2, 3, 1) * 255).round().to(torch.uint8).cpu().numpy()
# print('seq2:', seq.shape, seq.min(), seq.max())
Image.fromarray(seq[0]).save(args.output_dir + "/seqs/iadb_img{:0>5}_step{:}.png".format(cnt, i*25))
if args.noise_type in ['gaussian']:
save_name = 'iadb_gwn'
elif args.noise_type in ['gaussianBN']:
save_name = 'iadb_gwn2gbn'
else:
raise ValueError(f"Unsupported noise type: {args.noise_type}")
for i, image in enumerate(images):
cnt += 1
Image.fromarray(image).save(args.output_dir + "/images/{:}_{:0>5}.png".format(save_name, cnt))
print('Done.')
return
print('===> Start training!')
# print('first_epoch:', first_epoch, args.num_epochs)
losses = []
for epoch in tqdm(range(first_epoch, args.num_epochs)):
model.train()
# progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
# progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
# print('batch:', batch[0].shape, batch[1].shape)
clean_images = batch.to(weight_dtype)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
# random sampling
# timesteps = torch.randint(
# 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
# ).long()
# antithetic sampling borrowed from ddim
# timesteps = torch.randint(low=0, high=args.ddpm_num_steps, size=(bsz//2,)).to(clean_images.device)
# timesteps = torch.cat([timesteps, args.ddpm_num_steps - timesteps - 1], dim=0)[:bsz].long()
timesteps = torch.randint(low=1, high=args.ddpm_num_steps+1, size=(bsz//2,)).to(clean_images.device)
timesteps = torch.cat([timesteps, args.ddpm_num_steps - timesteps + 1], dim=0)[:bsz].long()
alpha = timesteps.float() / args.ddpm_num_steps
gamma_t = timesteps.float() / args.ddpm_num_steps
noise, noise_bn, noise_wn = get_noise_v2(accelerator.device, clean_images, cov_mat_L, gamma_t, timesteps, noise_type=args.noise_type, train_or_test='train', inplace=False)
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, alpha) # override
with accelerator.accumulate(model):
model_output = model(noisy_images, alpha, return_dict=False)[0]
# if args.prediction_type == "epsilon":
# loss = F.mse_loss(model_output.float(), (clean_images - noise).float())
if args.noise_type in ['gaussianBN', 'gaussianRN']:
tar1 = (clean_images - noise).float()
alpha_t_minus_1 = (timesteps - 1).float() / args.ddpm_num_steps
tar2 = alpha_t_minus_1.view(-1, 1, 1, 1) * (noise_bn - noise_wn)
# print('model_output:', model_output.shape)
split_size = int(model_output.shape[1] // 2)
d1 = model_output[:, :split_size, ...].float()
d2 = model_output[:, split_size:, ...].float()
gamma_t_minus_1 = (timesteps - 1).float() / args.ddpm_num_steps
delta_gamma_t = gamma_t - gamma_t_minus_1
delta_alpha_t = alpha - alpha_t_minus_1
loss1 = torch.sum((d1 - tar1)**2, dim=[1, 2, 3])
loss2 = torch.sum((d2 - tar2)**2, dim=[1, 2, 3])
loss1 = torch.sum(loss1 * delta_alpha_t / delta_alpha_t) # weight is simply 1
loss2 = torch.sum(loss2 * delta_gamma_t / delta_alpha_t) # weighted loss
loss = loss1 + loss2
elif args.noise_type in ['gaussian']:
loss = torch.sum((model_output.float() - (clean_images - noise).float())**2)
else:
raise ValueError(f"Unsupported noise type: {args.noise_type}")
accelerator.backward(loss)
# print('accelerator.sync_gradients:', accelerator.sync_gradients) # True
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
losses.append(loss.item())
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema_model.step(model.parameters())
# progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.cur_decay_value
# progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
# progress_bar.close()
# break
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the plots
plt.figure(1)
plt.plot(losses)
plt.savefig(args.output_dir + "/losses.png")
plt.clf()
# save the model
unet = accelerator.unwrap_model(model)
if args.use_ema:
ema_model.store(unet.parameters())
ema_model.copy_to(unet.parameters())
pipeline = IADBPipeline(unet=unet, scheduler=noise_scheduler)
pipeline.save_pretrained(args.output_dir)
if args.use_ema:
ema_model.restore(unet.parameters())
accelerator.end_training()
if __name__ == "__main__":
main()