-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprint_graph_summary.py
66 lines (46 loc) · 1.89 KB
/
print_graph_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# coding: utf-8
import sys
import os
import numpy as np
from graph_tool.all import load_graph, global_clustering, \
assortativity, label_components, label_largest_component, \
pseudo_diameter
import pandas as pd
g = load_graph(sys.argv[1])
data = []
data.append(('nodes', g.num_vertices()))
data.append(('edges', g.num_edges()))
data.append(('is_directed?', g.is_directed()))
deg = g.degree_property_map('total')
num = int(np.sum(deg.a == 0))
data.append(('isolated nodes', '{} ({:.2f}%)'.format(num, num / g.num_vertices() * 100)))
labels, hist = label_components(g, directed=False)
data.append(('number of connected components', len(hist)))
_, hist = label_components(g, directed=False)
hist.sort()
if len(hist) > 1:
size1, size2 = hist[-1], hist[-2]
else:
size1, size2 = hist[-1], 0
data.append(('size of 1st/2nd component',
'{} ({:.2f}%), {}/({:.2f}%)'.format(
size1, 100 * size1 / g.num_vertices(),
size2, 100 * size2 / g.num_vertices())))
data.append(('min/max/avg degree',
'{}/{}/{:.2f}'.format(int(deg.a.min()),
int(deg.a.max()),
float(deg.a.mean()))))
data.append(('density', '{:.7f}'.format(2 * g.num_edges() / g.num_vertices() / (g.num_vertices() - 1))))
data.append(('clustering coefficient (std)', '{:.2f} ({:.2f})'.format(*global_clustering(g))))
sampled_sources = np.random.permutation(g.num_vertices())[:100]
dist = np.max([pseudo_diameter(g, s)[0] for s in sampled_sources])
data.append(('pseudo diameter', dist))
data.append(('assortativity (std)', '{:.2f} ({:.2f})'.format(
*assortativity(g, 'total'))))
index, col = zip(*data)
s = pd.Series(col, index=index)
print(s.to_string())
# save it somewhere
# name = ''.join(os.path.basename(sys.argv[1]).split('.')[:-1])
output_path = os.path.dirname(sys.argv[1]) + '/summary.csv'
s.to_csv(output_path)