This repository is the official implementation of the paper OMAD: Object Model with Articulated Deformations for Pose Estimation and Retrieval. This paper has been accepted to BMVC 2021.
ArtImage dataset contains the synthetic images generated from Unity along with the following annotations:
- RGB image
- depth map
- part mask
- part pose
This dataset also contains URDF articulated object models of five categories from PartNet-Mobility, which is re-annotated by us to align the rest state in the same category.
Environments:
- Python >= 3.7
- CUDA >= 10.0
git clone https://github.com/xiaoxiaoxh/OMAD.git
cd OMAD
Install the dependencies listed in requirements.txt
pip install -r requirements.txt
Then, compile CUDA module - index_max:
cd models/index_max_ext
python setup.py install
Finally, download ArtImage Dataset and put it in OMAD/data
folder.
Now you are ready to go!
python train_omad_priornet.py --num_kp 24 --work_dir work_dir/omad_priornet_laptop --category 1 --num_parts 2 --use_relative_coverage --symtype shape
python test_omad_priornet.py --num_kp 24 --checkpoint model_current_laptop.pth --work_dir work_dir/omad_priornet_laptop --bs 16 --workers 0 --use_gpu --symtype shape --out --mode train
python test_omad_priornet.py --num_kp 24 --checkpoint model_current_laptop.pth --work_dir work_dir/omad_priornet_laptop --bs 16 --workers 0 --use_gpu --symtype shape --out --mode val
python train_omad_net.py --num_kp 24 --work_dir work_dir/omad-net_laptop --params_dir work_dir/omad_priornet_laptop --num_basis 10 --symtype shape
python test_omad_net.py --num_kp 24 --checkpoint model_current_laptop.pth --work_dir work_dir/omad-net_laptop --params_dir work_dir/omad_priornet_laptop --category 1 --num_basis 10 --num_parts 2 --symtype shape --kp_thr 0.1 --reg_weight 0 --out raw_results.pkl --num_process 8 --use_gpu --data_postfix final_test --shuffle