-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtest_warping.py
231 lines (192 loc) · 11.8 KB
/
test_warping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from options.train_options import TrainOptions
from models.networks import load_checkpoint_parallel
from models.afwm import AFWM_Vitonhd_lrarms, AFWM_Dressescode_lrarms
import torch.nn.functional as F
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import cv2
import tqdm
opt = TrainOptions().parse()
os.makedirs('sample/'+opt.name, exist_ok=True)
def CreateDataset(opt):
if opt.dataset == 'vitonhd':
from data.aligned_dataset_vitonhd import AlignedDataset
dataset = AlignedDataset()
dataset.initialize(opt, mode='test')
elif opt.dataset == 'dresscode':
from data.aligned_dataset_dresscode import AlignedDataset
dataset = AlignedDataset()
dataset.initialize(opt, mode='test', stage='warp')
return dataset
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(
'nccl',
init_method='env://'
)
device = torch.device(f'cuda:{opt.local_rank}')
train_data = CreateDataset(opt)
train_sampler = DistributedSampler(train_data)
train_loader = DataLoader(train_data, batch_size=opt.batchSize, shuffle=False,
num_workers=4, pin_memory=True, sampler=train_sampler)
if opt.dataset == 'vitonhd':
warp_model = AFWM_Vitonhd_lrarms(opt, 51)
elif opt.dataset == 'dresscode':
warp_model = AFWM_Dressescode_lrarms(opt, 51)
warp_model.train()
warp_model.cuda()
load_checkpoint_parallel(warp_model, opt.PBAFN_warp_checkpoint)
warp_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(warp_model).to(device)
if opt.isTrain and len(opt.gpu_ids):
model = torch.nn.parallel.DistributedDataParallel(
warp_model, device_ids=[opt.local_rank])
softmax = torch.nn.Softmax(dim=1)
for ii, data in enumerate(tqdm.tqdm(train_loader)):
with torch.no_grad():
pre_clothes_edge = data['edge']
clothes = data['color']
clothes = clothes * pre_clothes_edge
pose = data['pose']
size = data['color'].size()
oneHot_size1 = (size[0], 25, size[2], size[3])
densepose = torch.cuda.FloatTensor(torch.Size(oneHot_size1)).zero_()
densepose = densepose.scatter_(1,data['densepose'].data.long().cuda(),1.0)
densepose = densepose * 2.0 - 1.0
densepose_fore = data['densepose']/24.0
left_cloth_sleeve_mask = data['flat_clothes_left_mask']
cloth_torso_mask = data['flat_clothes_middle_mask']
right_cloth_sleeve_mask = data['flat_clothes_right_mask']
clothes_left = clothes * left_cloth_sleeve_mask
clothes_torso = clothes * cloth_torso_mask
clothes_right = clothes * right_cloth_sleeve_mask
cloth_parse_for_d = data['flat_clothes_label'].cuda()
pose = pose.cuda()
clothes = clothes.cuda()
clothes_left = clothes_left.cuda()
clothes_torso = clothes_torso.cuda()
clothes_right = clothes_right.cuda()
pre_clothes_edge = pre_clothes_edge.cuda()
left_cloth_sleeve_mask = left_cloth_sleeve_mask.cuda()
cloth_torso_mask = cloth_torso_mask.cuda()
right_cloth_sleeve_mask = right_cloth_sleeve_mask.cuda()
preserve_mask3 = data['preserve_mask3'].cuda()
if opt.resolution == 512:
concat = torch.cat([densepose, pose, preserve_mask3], 1)
if opt.dataset == 'vitonhd':
flow_out = model(concat, clothes, pre_clothes_edge, cloth_parse_for_d, \
clothes_left, clothes_torso, clothes_right, \
left_cloth_sleeve_mask, cloth_torso_mask, right_cloth_sleeve_mask, \
preserve_mask3)
elif opt.dataset == 'dresscode':
cloth_type = data['flat_clothes_type'].cuda()
flow_out = model(concat, clothes, pre_clothes_edge, cloth_parse_for_d, \
clothes_left, clothes_torso, clothes_right, \
left_cloth_sleeve_mask, cloth_torso_mask, right_cloth_sleeve_mask, \
preserve_mask3, cloth_type)
last_flow, last_flow_all, delta_list, x_all, x_edge_all, delta_x_all, delta_y_all, \
x_full_all, x_edge_full_all, attention_all, seg_list = flow_out
else:
densepose_ds = F.interpolate(densepose, scale_factor=0.5, mode='nearest')
pose_ds = F.interpolate(pose, scale_factor=0.5, mode='nearest')
preserve_mask3_ds = F.interpolate(preserve_mask3, scale_factor=0.5, mode='nearest')
concat = torch.cat([densepose_ds, pose_ds, preserve_mask3_ds], 1)
clothes_ds = F.interpolate(clothes, scale_factor=0.5, mode='bilinear')
pre_clothes_edge_ds = F.interpolate(pre_clothes_edge, scale_factor=0.5, mode='nearest')
cloth_parse_for_d_ds = F.interpolate(cloth_parse_for_d, scale_factor=0.5, mode='nearest')
clothes_left_ds = F.interpolate(clothes_left, scale_factor=0.5, mode='bilinear')
clothes_torso_ds = F.interpolate(clothes_torso, scale_factor=0.5, mode='bilinear')
clothes_right_ds = F.interpolate(clothes_right, scale_factor=0.5, mode='bilinear')
left_cloth_sleeve_mask_ds = F.interpolate(left_cloth_sleeve_mask, scale_factor=0.5, mode='nearest')
cloth_torso_mask_ds = F.interpolate(cloth_torso_mask, scale_factor=0.5, mode='nearest')
right_cloth_sleeve_mask_ds = F.interpolate(right_cloth_sleeve_mask, scale_factor=0.5, mode='nearest')
if opt.dataset == 'vitonhd':
flow_out = model(concat, clothes_ds, pre_clothes_edge_ds, cloth_parse_for_d_ds, \
clothes_left_ds, clothes_torso_ds, clothes_right_ds, \
left_cloth_sleeve_mask_ds, cloth_torso_mask_ds, right_cloth_sleeve_mask_ds, \
preserve_mask3_ds)
elif opt.dataset == 'dresscode':
cloth_type = data['flat_clothes_type'].cuda()
cloth_type_ds = F.interpolate(cloth_type, scale_factor=0.5, mode='bilinear')
flow_out = model(concat, clothes_ds, pre_clothes_edge_ds, cloth_parse_for_d_ds, \
clothes_left_ds, clothes_torso_ds, clothes_right_ds, \
left_cloth_sleeve_mask_ds, cloth_torso_mask_ds, right_cloth_sleeve_mask_ds, \
preserve_mask3_ds, cloth_type_ds)
last_flow, last_flow_all, delta_list, x_all, x_edge_all, delta_x_all, delta_y_all, \
x_full_all, x_edge_full_all, attention_all, seg_list = flow_out
last_flow = F.interpolate(last_flow, scale_factor=2, mode='bilinear')
bz = pose.size(0)
left_last_flow = last_flow[0:bz]
torso_last_flow = last_flow[bz:2*bz]
right_last_flow = last_flow[2*bz:]
left_warped_full_cloth = F.grid_sample(clothes_left.cuda(), left_last_flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='zeros')
torso_warped_full_cloth = F.grid_sample(clothes_torso.cuda(), torso_last_flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='zeros')
right_warped_full_cloth = F.grid_sample(clothes_right.cuda(), right_last_flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='zeros')
left_warped_cloth_edge = F.grid_sample(left_cloth_sleeve_mask.cuda(), left_last_flow.permute(0, 2, 3, 1),mode='nearest', padding_mode='zeros')
torso_warped_cloth_edge = F.grid_sample(cloth_torso_mask.cuda(), torso_last_flow.permute(0, 2, 3, 1),mode='nearest', padding_mode='zeros')
right_warped_cloth_edge = F.grid_sample(right_cloth_sleeve_mask.cuda(), right_last_flow.permute(0, 2, 3, 1),mode='nearest', padding_mode='zeros')
for bb in range(bz):
seg_preds = torch.argmax(softmax(seg_list[-1]),dim=1)[:,None,...].float()
if opt.resolution == 1024:
seg_preds = F.interpolate(seg_preds, scale_factor=2, mode='nearest')
c_type = data['c_type'][bb]
if opt.dataset == 'vitonhd':
left_mask = (seg_preds[bb]==1).float()
torso_mask = (seg_preds[bb]==2).float()
right_mask = (seg_preds[bb]==3).float()
left_arm_mask = (seg_preds[bb]==4).float()
right_arm_mask = (seg_preds[bb]==5).float()
neck_mask = (seg_preds[bb]==6).float()
warped_cloth_fusion = left_warped_full_cloth[bb] * left_mask + \
torso_warped_full_cloth[bb] * torso_mask + \
right_warped_full_cloth[bb] * right_mask
warped_edge_fusion = left_warped_cloth_edge[bb] * left_mask * 1 + \
torso_warped_cloth_edge[bb] * torso_mask * 2 + \
right_warped_cloth_edge[bb] * right_mask * 3
warped_cloth_fusion = warped_cloth_fusion * (1-preserve_mask3[bb])
warped_edge_fusion = warped_edge_fusion * (1-preserve_mask3[bb])
warped_edge_fusion = warped_edge_fusion + \
left_arm_mask * 4 + \
right_arm_mask * 5 + \
neck_mask * 6
elif opt.dataset == 'dresscode':
if c_type == 'upper' or c_type == 'dresses':
left_mask = (seg_preds[bb]==1).float()
torso_mask = (seg_preds[bb]==2).float()
right_mask = (seg_preds[bb]==3).float()
else:
left_mask = (seg_preds[bb]==4).float()
torso_mask = (seg_preds[bb]==5).float()
right_mask = (seg_preds[bb]==6).float()
left_arms_mask = (seg_preds[bb]==7).float()
right_arms_mask = (seg_preds[bb]==8).float()
neck_mask = (seg_preds[bb]==9).float()
warped_cloth_fusion = left_warped_full_cloth[bb] * left_mask + \
torso_warped_full_cloth[bb] * torso_mask + \
right_warped_full_cloth[bb] * right_mask
if c_type == 'upper' or c_type == 'dresses':
warped_edge_fusion = left_warped_cloth_edge[bb] * left_mask * 1 + \
torso_warped_cloth_edge[bb] * torso_mask * 2 + \
right_warped_cloth_edge[bb] * right_mask * 3
else:
warped_edge_fusion = left_warped_cloth_edge[bb] * left_mask * 4 + \
torso_warped_cloth_edge[bb] * torso_mask * 5 + \
right_warped_cloth_edge[bb] * right_mask * 6
warped_cloth_fusion = warped_cloth_fusion * (1-preserve_mask3[bb])
warped_edge_fusion = warped_edge_fusion * (1-preserve_mask3[bb])
warped_edge_fusion = warped_edge_fusion + \
left_arms_mask * 7 + \
right_arms_mask * 8 + \
neck_mask * 9
eee = warped_cloth_fusion
eee_edge = torch.cat([warped_edge_fusion,warped_edge_fusion,warped_edge_fusion],0)
eee_edge = eee_edge.permute(1,2,0).detach().cpu().numpy().astype(np.uint8)
cv_img = (eee.permute(1, 2, 0).detach().cpu().numpy()+1)/2
rgb = (cv_img*255).astype(np.uint8)
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
bgr = np.concatenate([bgr,eee_edge],1)
cloth_id = data['color_path'][bb].split('/')[-1]
person_id = data['img_path'][bb].split('/')[-1]
save_path = 'sample/'+opt.name+'/'+c_type+'___'+person_id+'___'+cloth_id[:-4]+'.png'
cv2.imwrite(save_path, bgr)