forked from karpathy/neuraltalk2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideocaptioning.lua
142 lines (122 loc) · 5.38 KB
/
videocaptioning.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
require 'torch'
require 'nn'
require 'nngraph'
-- exotics
-- local imports
local utils = require 'misc.utils'
require 'misc.DataLoader'
require 'misc.DataLoaderRaw'
require 'misc.LanguageModel'
local net_utils = require 'misc.net_utils'
local cv = require 'cv'
require 'cv.highgui'
require 'cv.videoio'
require 'cv.imgcodecs'
require 'cv.imgproc'
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train an Image Captioning model')
cmd:text()
cmd:text('Options')
-- Input paths
cmd:option('-model','','path to model to evaluate')
-- Basic options
cmd:option('-batch_size', 1, 'if > 0 then overrule, otherwise load from checkpoint.')
cmd:option('-num_images', 100, 'how many images to use when periodically evaluating the loss? (-1 = all)')
cmd:option('-language_eval', 0, 'Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
cmd:option('-dump_images', 1, 'Dump images into vis/imgs folder for vis? (1=yes,0=no)')
cmd:option('-dump_json', 1, 'Dump json with predictions into vis folder? (1=yes,0=no)')
cmd:option('-dump_path', 0, 'Write image paths along with predictions into vis json? (1=yes,0=no)')
-- Sampling options
cmd:option('-sample_max', 1, '1 = sample argmax words. 0 = sample from distributions.')
cmd:option('-beam_size', 2, 'used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
cmd:option('-temperature', 1.0, 'temperature when sampling from distributions (i.e. when sample_max = 0). Lower = "safer" predictions.')
-- misc
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-id', 'evalscript', 'an id identifying this run/job. used only if language_eval = 1 for appending to intermediate files')
cmd:option('-seed', 123, 'random number generator seed to use')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:text()
-------------------------------------------------------------------------------
-- Basic Torch initializations
-------------------------------------------------------------------------------
local opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1) -- note +1 because lua is 1-indexed
end
cv.namedWindow{winname="NeuralTalk2", flags=cv.WINDOW_AUTOSIZE}
local cap = cv.VideoCapture{device=0}
if not cap:isOpened() then
print("Failed to open the default camera")
os.exit(-1)
end
local _, frame = cap:read{}
-------------------------------------------------------------------------------
-- Load the model checkpoint to evaluate
-------------------------------------------------------------------------------
assert(string.len(opt.model) > 0, 'must provide a model')
local checkpoint = torch.load(opt.model)
-- override and collect parameters
if opt.batch_size == 0 then opt.batch_size = checkpoint.opt.batch_size end
local fetch = {'rnn_size', 'input_encoding_size', 'drop_prob_lm', 'cnn_proto', 'cnn_model', 'seq_per_img'}
for k,v in pairs(fetch) do
opt[v] = checkpoint.opt[v] -- copy over options from model
end
local vocab = checkpoint.vocab -- ix -> word mapping
-------------------------------------------------------------------------------
-- Load the networks from model checkpoint
-------------------------------------------------------------------------------
local protos = checkpoint.protos
protos.expander = nn.FeatExpander(opt.seq_per_img)
protos.lm:createClones() -- reconstruct clones inside the language model
if opt.gpuid >= 0 then for k,v in pairs(protos) do v:cuda() end end
-------------------------------------------------------------------------------
-- Evaluation fun(ction)
-------------------------------------------------------------------------------
local function run()
protos.cnn:evaluate()
protos.lm:evaluate()
while true do
local w = frame:size(2)
local h = frame:size(1)
-- take a central crop
local crop = cv.getRectSubPix{image=frame, patchSize={h,h}, center={w/2, h/2}}
local cropsc = cv.resize{src=crop, dsize={256,256}}
-- BGR2RGB
cropsc = cropsc:index(3,torch.LongTensor{3,2,1})
-- HWC2CHW
cropsc = cropsc:permute(3,1,2)
-- fetch a batch of data
local batch = cropsc:contiguous():view(1,3,256,256)
local batch_processed = net_utils.prepro(batch, false, opt.gpuid >= 0) -- preprocess in place, and don't augment
-- forward the model to get loss
local feats = protos.cnn:forward(batch_processed)
-- forward the model to also get generated samples for each image
local sample_opts = { sample_max = opt.sample_max, beam_size = opt.beam_size, temperature = opt.temperature }
local seq = protos.lm:sample(feats, sample_opts)
local sents = net_utils.decode_sequence(vocab, seq)
print(sents[1])
cv.putText{
img=crop,
text = sents[1],
org={10,20},
fontFace=cv.FONT_HERSHEY_DUPLEX,
fontScale=0.5,
color={255, 255, 0},
thickness=1
}
cv.imshow{winname="NeuralTalk2", image=crop}
if cv.waitKey{30} >= 0 then break end
cap:read{image=frame}
end
end
run()