2022.08.25: The DCSAU-Net model has been optimised. The paper will be updated later.
2022.09.27: The updated preprint has been available at arXiv.
2022.10.05: The method of calculating FLOPs, parameters and FPS has been uploaded.
2022.12.09: A requirements.txt for Linux environment has been uploaded.
2023.02.02: The article has been accepted and available in the journal: Computers in Biology and Medicine.
If you like our work, please 🌟 🌟 🌟. We highly appreciate your effort and time. 😝 😝 😝
- pytorch==1.10.0
- pytorch-lightning==1.1.0
- albumentations==0.3.2
- seaborn
- sklearn
To apply the model on a custom dataset, the data tree should be constructed as:
├── data
├── images
├── image_1.png
├── image_2.png
├── image_n.png
├── masks
├── image_1.png
├── image_2.png
├── image_n.png
python data_split_csv.py --dataset your/data/path --size 0.9
python train.py --dataset your/data/path --csvfile your/csv/path --loss dice --batch 16 --lr 0.001 --epoch 150
python eval_binary.py --dataset your/data/path --csvfile your/csv/path --model save_models/epoch_last.pth --debug True