forked from rgcgithub/clamms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm.c
664 lines (594 loc) · 25.4 KB
/
hmm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "hmm.h"
#include "utils.h"
#include "ltqnorm.c"
int get_next_window(int window, int n_windows,
unsigned char *window_chr,
char *max_cn) {
int next = window + 1;
while (max_cn[next] < 0 && next < n_windows-1)
next++;
if (max_cn[next] < 0 || window_chr[next] != window_chr[window])
return -1;
else
return next;
}
int get_prev_window(int window, int n_windows,
unsigned char *window_chr,
char *max_cn) {
int prev = window - 1;
while (max_cn[prev] < 0 && prev > 0)
prev--;
if (max_cn[prev] < 0 || window_chr[prev] != window_chr[window])
return -1;
else
return prev;
}
double transition_prob(int from, int to, double p, double f) {
if (from == NORM) {
if (to == NORM) return 1.0 - 2.0*p;
else return p;
} else if (from == DEL) {
if (to == DEL) return f + (1.0 - f) * p;
else if (to == NORM) return (1.0 - f) * (1.0 - 2.0*p);
else return (1.0 - f) * p;
} else if (from == DUP) {
if (to == DUP) return f + (1.0 - f) * p;
else if (to == NORM) return (1.0 - f) * (1.0 - 2.0*p);
else return (1.0 - f) * p;
} else {
fprintf(stderr, "Invalid call to transition_prob: from %d to %d\n", from, to);
exit(1);
}
}
// cov should be already centered+scaled
double homozygous_del_log_likelihood(double cov, int dist_is_point, double lambda) {
if (dist_is_point) {
if (cov < -0.98) return 3.912023; // log(50)
else if (cov < 0.0) return -13.81551; // log(1e-6)
else return -100.0;
} else {
double log_lambda = log(lambda);
return log_lambda - lambda * (cov + 1.0);
}
}
// cov should be already centered+scaled
double gaussian_log_likelihood(double cov, int cn, double sigma_dip) {
double var = sigma_dip * sigma_dip;
double const_term = -0.5 * log(M_2_PI * var);
double scale_term = 1.0 / (2.0 * var);
double dev = cov + 1.0 - 0.5 * cn;
return const_term - scale_term * dev * dev;
}
int expected_copy_number(char sex, unsigned char chr) {
if (sex == 'F' && chr == CHR_Y)
return NOT_PRESENT;
else if ((sex == 'M' && (chr == CHR_X || chr == CHR_Y)) || chr == CHR_M)
return HAPLOID;
else
return DIPLOID;
}
double gc_confidence_term(double gc, double gc_min, double gc_max) {
if (gc < gc_min || gc > gc_max) return 0.0;
double constant;
if (gc <= 0.5) {
constant = 1.0/( 0.5 - gc_min + GC_BUFFER );
}
else if (gc > 0.5) {
constant = 1.0/( gc_max - 0.5 + GC_BUFFER );
}
double x = constant * fabs(gc - 0.5);
double x_2 = x * x;
double x_4 = x_2 * x_2;
double x_8 = x_4 * x_4;
double x_16 = x_8 * x_8;
double x_18 = x_16 * x_2;
double y = 1.0 - x_18;
double y_2 = y * y;
double y_4 = y_2 * y_2;
double y_8 = y_4 * y_4;
double y_16 = y_8 * y_8;
double y_18 = y_16 * y_2;
if (y_18 < 0.0) return 0.0;
else return y_18;
}
double cov_confidence_term(int expected_cn,
char max_cn,
double coverage,
unsigned char hom_del_flag,
double lambda,
double sigma_dip) {
if (hom_del_flag && coverage < HOM_DEL_THRESHOLD)
return 1.0;
int i;
int ml_nonzero_cn = 1;
double ml_cov_sigma = fabs(coverage + 0.5) / (sigma_dip * SIGMA_RATIO_CN1);
for (i = 2; i <= max_cn; i++) {
double model_sigma = sigma_dip;
if (i == 3) model_sigma *= SIGMA_RATIO_CN3;
else if (i == 4) model_sigma *= SIGMA_RATIO_CN4;
else if (i == 5) model_sigma *= SIGMA_RATIO_CN5;
else if (i == 6) model_sigma *= SIGMA_RATIO_CN6;
double cov_sigma = fabs(coverage - (-1.0 + 0.5*i)) / model_sigma;
if (cov_sigma < ml_cov_sigma) {
ml_cov_sigma = cov_sigma;
ml_nonzero_cn = i;
}
}
if (ml_nonzero_cn == 1 && !hom_del_flag) {
double expo_tail_prob = exp(-lambda * (coverage + 1.0));
double gaus_tail_prob = 0.5 * erfc(ml_cov_sigma / sqrt(2.0));
if (expo_tail_prob > gaus_tail_prob) {
if (expo_tail_prob > 0.5)
return 1.0;
else
ml_cov_sigma = -ltqnorm(expo_tail_prob); // gaussian inverse cdf
}
}
double max_sigma = 3.598858; // -> y_18 @ 3-sigma = 0.5
if (ml_nonzero_cn > expected_cn)
max_sigma = 2.9990483; // -> y_18 @ 2.5-sigma = 0.5
if (ml_cov_sigma < 0.0)
return 1.0; // shouldn't happen, but checking just in case there's floating point error or something
else if (ml_cov_sigma > max_sigma)
return 0.0;
double x = ml_cov_sigma / max_sigma;
double x_2 = x * x;
double x_4 = x_2 * x_2;
double x_8 = x_4 * x_4;
double x_16 = x_8 * x_8;
double x_18 = x_16 * x_2;
double y = 1.0 - x_18;
double y_2 = y * y;
double y_4 = y_2 * y_2;
double y_8 = y_4 * y_4;
double y_16 = y_8 * y_8;
double y_18 = y_16 * y_2;
if (y_18 < 0.0) return 0.0;
else return y_18;
}
void read_model_data(FILE *input,
int n_windows,
unsigned char *window_chr,
int *window_start,
int *window_end,
char *max_cn,
unsigned char *hom_del_flag,
double *window_gc,
double *lambda,
double *mu_dip,
double *sigma_dip,
double *model_conf) {
int i = 0;
char *line = NULL;
char *pos;
size_t line_len;
ssize_t bytes_read;
while ((bytes_read = getline(&line, &line_len, input)) != -1) {
if (*line == 'X') window_chr[i] = CHR_X;
else if (*line == 'Y') window_chr[i] = CHR_Y;
else if (*line == 'M') window_chr[i] = CHR_M;
else sscanf(line, "%hhu", window_chr + i);
pos = line;
pos = strchr(pos+1, '\t');
sscanf(pos+1, "%u", window_start + i);
pos = strchr(pos+1, '\t');
sscanf(pos+1, "%u", window_end + i);
pos = strchr(pos+1, '\t');
pos++;
sscanf(pos, "%hhd", max_cn + i);
//if (max_cn[i] == 2) max_cn[i] == 3; // we limit common del regions to CN 2
// for purposes of fitting model parameters
// but we allow the possibility of a rare CN 3
// when making the final CNV calls
window_gc[i] = strtod(pos+2, &pos);
pos = strchr(pos+1, '\t');
pos++;
sscanf(pos, "%hhu", hom_del_flag + i);
lambda[i] = strtod(pos+1, &pos);
mu_dip[i] = strtod(pos+1, &pos);
sigma_dip[i] = strtod(pos+1, &pos);
i++;
}
}
void read_coverage_data(FILE *input,
int n_windows,
unsigned char *window_chr,
int *window_start,
int *window_end,
double *cov,
double *mu_dip) {
int i;
char *line = NULL;
char *pos;
size_t line_len;
ssize_t bytes_read;
for (i = 0; i < n_windows; i++) {
bytes_read = getline(&line, &line_len, input);
if (bytes_read == -1) {
fputs("ERROR: coverage file and models file must be for exactly the same set of genomic windows\n.", stderr);
exit(1);
}
unsigned char chr;
int start, end;
if (*line == 'X') chr = CHR_X;
else if (*line == 'Y') chr = CHR_Y;
else if (*line == 'M') chr = CHR_M;
else sscanf(line, "%hhu", &chr);
pos = line;
pos = strchr(pos+1, '\t');
sscanf(pos+1, "%u", &start);
pos = strchr(pos+1, '\t');
sscanf(pos+1, "%u", &end);
if (chr != window_chr[i] || start != window_start[i] || end != window_end[i]) {
fputs("ERROR: coverage file and models file must be for exactly the same set of genomic windows\n.", stderr);
exit(1);
}
pos = strchr(pos+1, '\t');
cov[i] = (strtod(pos+1, NULL) - mu_dip[i]) / mu_dip[i];
}
}
void calc_base_model_conf(int n_windows,
double gc_min,
double gc_max,
unsigned char *window_chr,
int *window_start,
int *window_end,
char *max_cn,
double *window_gc,
double *model_conf) {
int i;
for (i = 0; i < n_windows; i++) {
if (max_cn[i] < 0) continue;
int prev_window = get_prev_window(i, n_windows, window_chr, max_cn);
int next_window = get_next_window(i, n_windows, window_chr, max_cn);
int prev_window_end = -1;
int next_window_start = -1;
if (prev_window != -1) prev_window_end = window_end[prev_window];
if (next_window != -1) next_window_start = window_start[next_window];
model_conf[i] = gc_confidence_term(window_gc[i], gc_min, gc_max);
if (window_start[i] == prev_window_end || window_end[i] == next_window_start)
model_conf[i] = fmin(model_conf[i], 2.0/3.0);
}
}
// coverage should already be centered+scaled around mu_dip
void calc_sample_specific_model_conf(int n_windows,
char sex,
unsigned char *window_chr,
char *max_cn,
double *cov,
unsigned char *hom_del_flag,
double *lambda,
double *sigma_dip,
double *model_conf) {
int i;
for (i = 0; i < n_windows; i++) {
if (max_cn[i] < 0) continue;
double cov_conf = cov_confidence_term(
expected_copy_number(sex, window_chr[i]),
max_cn[i], cov[i], hom_del_flag[i], lambda[i], sigma_dip[i]);
model_conf[i] = fmin(model_conf[i], cov_conf);
}
}
void calc_cn_emission_logp(int n_windows,
char sex,
unsigned char *window_chr,
char *max_cn,
double *cov,
unsigned char *hom_del_flag,
double *lambda,
double *sigma_dip,
double **cn_emission_logp) {
int i, j;
for (i = 0; i < n_windows; i++) {
if (max_cn[i] < 0) continue;
int norm_cn = expected_copy_number(sex, window_chr[i]);
if (norm_cn == HAPLOID) max_cn[i] = 2;
// first just compute the likelihoods
cn_emission_logp[i][0] = homozygous_del_log_likelihood(cov[i], hom_del_flag[i], lambda[i]);
for (j = 1; j <= MAX_CN; j++)
cn_emission_logp[i][j] = gaussian_log_likelihood(cov[i], j, sigma_dip[i]);
// now use bayes theorem to go from likelihoods to actual probabilities
// we use a uniform prior, since our prior beliefs about CNV probabilities
// are already encoded in the transition matrix of the HMM
double evidence = 0.0;
for (j = 0; j <= max_cn[i]; j++)
evidence += exp(cn_emission_logp[i][j]);
evidence = log(evidence);
for (j = 0; j <= max_cn[i]; j++)
cn_emission_logp[i][j] -= evidence;
}
}
void calc_hmm_state_emission_logp(int n_windows,
char sex,
unsigned char *window_chr,
char *max_cn,
double **cn_emission_logp,
double **hmm_state_emission_logp) {
int i, j;
for (i = 0; i < n_windows; i++) {
int norm_cn = expected_copy_number(sex, window_chr[i]);
if (norm_cn == NOT_PRESENT) {
hmm_state_emission_logp[i][DEL] = -100.0;
hmm_state_emission_logp[i][NORM] = 0.0;
hmm_state_emission_logp[i][DUP] = -100.0;
} else if (norm_cn == HAPLOID) {
hmm_state_emission_logp[i][DEL] = cn_emission_logp[i][0];
hmm_state_emission_logp[i][NORM] = cn_emission_logp[i][1];
hmm_state_emission_logp[i][DUP] = cn_emission_logp[i][2];
} else {
hmm_state_emission_logp[i][DEL] = log(exp(cn_emission_logp[i][0]) +
exp(cn_emission_logp[i][1]));
hmm_state_emission_logp[i][NORM] = cn_emission_logp[i][2];
double dup_tmp = 0.0;
for (j = 3; j <= max_cn[i]; j++)
dup_tmp += exp(cn_emission_logp[i][j]);
hmm_state_emission_logp[i][DUP] = log(dup_tmp);
}
}
}
unsigned char *viterbi(int n_windows,
int direction,
unsigned char *window_chr,
int *window_start,
int *window_end,
char *max_cn,
double *model_conf,
double **hmm_state_emission_logp,
double cnv_rate,
double mean_cnv_length) {
int i, j;
unsigned char **ml_prev_state = (unsigned char **) malloc(n_windows * sizeof(unsigned char *));
unsigned char *ml_final_state = (unsigned char *) malloc(N_CHROM * sizeof(unsigned char));
for (i = 0; i < n_windows; i++)
ml_prev_state[i] = (unsigned char *) malloc(N_STATES * sizeof(unsigned char));
unsigned char *ml_state_seq = (unsigned char *) malloc(n_windows * sizeof(unsigned char *));
int start_window, end_window, delta;
if (direction == FORWARD) {
start_window = 0;
end_window = n_windows;
delta = 1;
} else {
start_window = n_windows-1;
end_window = -1;
delta = -1;
}
unsigned char last_chr = 0;
int last_coord;
double v_prev[N_STATES]; // viterbi state scores for previous window
double v_cur[N_STATES]; // viterbi state scores for current window
unsigned char tmp_state;
double tmp_logp;
for (i = start_window; i != end_window; i += delta) {
if (max_cn[i] < 0) continue;
// if at a new chromosome, restart the algorithm
if (window_chr[i] != last_chr) {
if (last_chr != 0) {
tmp_state = DEL; tmp_logp = v_prev[DEL];
if (v_prev[NORM] > tmp_logp) { tmp_state = NORM; tmp_logp = v_prev[NORM]; }
if (v_prev[DUP] > tmp_logp) { tmp_state = DUP; tmp_logp = v_prev[DUP]; }
ml_final_state[last_chr-1] = tmp_state;
}
last_chr = window_chr[i];
if (direction == FORWARD)
last_coord = window_start[i];
else
last_coord = window_end[i];
v_prev[DEL] = log(cnv_rate);
v_prev[NORM] = log(1.0 - 2.0*cnv_rate);
v_prev[DUP] = log(cnv_rate);
}
v_cur[DEL] = hmm_state_emission_logp[i][DEL];
v_cur[NORM] = hmm_state_emission_logp[i][NORM];
v_cur[DUP] = hmm_state_emission_logp[i][DUP];
// if we're not confident in the validity of the model at this window
// don't give as much weight to its emission likelihoods
// note that this doesn't bias in favor of the DIP state:
// the effect of the window's predictions on all states is discounted
v_cur[DEL] *= model_conf[i];
v_cur[NORM] *= model_conf[i];
v_cur[DUP] *= model_conf[i];
// attenuation factor for state transitions
// the probability of a CNV in the last window being extended to this one
// is proportional to this factor
double attenuation;
if (direction == FORWARD)
attenuation = exp(-((double)(window_start[i]-last_coord)) / mean_cnv_length);
else
attenuation = exp(-((double)(last_coord-window_end[i])) / mean_cnv_length);
// find most likely previous state for DEL
double del_del = v_prev[DEL] + log(transition_prob(DEL, DEL, cnv_rate, attenuation));
double norm_del = v_prev[NORM] + log(transition_prob(NORM, DEL, cnv_rate, attenuation));
double dup_del = v_prev[DUP] + log(transition_prob(DUP, DEL, cnv_rate, attenuation));
tmp_state = DEL; tmp_logp = del_del;
if (norm_del > tmp_logp) { tmp_state = NORM; tmp_logp = norm_del; }
if (dup_del > tmp_logp) { tmp_state = DUP; tmp_logp = dup_del; }
ml_prev_state[i][DEL] = tmp_state;
v_cur[DEL] += tmp_logp;
// find most likely previous state for NORM
double del_norm = v_prev[DEL] + log(transition_prob(DEL, NORM, cnv_rate, attenuation));
double norm_norm = v_prev[NORM] + log(transition_prob(NORM, NORM, cnv_rate, attenuation));
double dup_norm = v_prev[DUP] + log(transition_prob(DUP, NORM, cnv_rate, attenuation));
tmp_state = DEL; tmp_logp = del_norm;
if (norm_norm > tmp_logp) { tmp_state = NORM; tmp_logp = norm_norm; }
if (dup_norm > tmp_logp) { tmp_state = DUP; tmp_logp = dup_norm; }
ml_prev_state[i][NORM] = tmp_state;
v_cur[NORM] += tmp_logp;
// find most likely previous state for DUP
double del_dup = v_prev[DEL] + log(transition_prob(DEL, DUP, cnv_rate, attenuation));
double norm_dup = v_prev[NORM] + log(transition_prob(NORM, DUP, cnv_rate, attenuation));
double dup_dup = v_prev[DUP] + log(transition_prob(DUP, DUP, cnv_rate, attenuation));
tmp_state = DEL; tmp_logp = del_dup;
if (norm_dup > tmp_logp) { tmp_state = NORM; tmp_logp = norm_dup; }
if (dup_dup > tmp_logp) { tmp_state = DUP; tmp_logp = dup_dup; }
ml_prev_state[i][DUP] = tmp_state;
v_cur[DUP] += tmp_logp;
// update lagging statistics
if (direction == FORWARD)
last_coord = window_start[i];
else
last_coord = window_end[i];
v_prev[DEL] = v_cur[DEL];
v_prev[NORM] = v_cur[NORM];
v_prev[DUP] = v_cur[DUP];
}
tmp_state = DEL; tmp_logp = v_prev[DEL];
if (v_prev[NORM] > tmp_logp) { tmp_state = NORM; tmp_logp = v_prev[NORM]; }
if (v_prev[DUP] > tmp_logp) { tmp_state = DUP; tmp_logp = v_prev[DUP]; }
ml_final_state[last_chr-1] = tmp_state;
// backtrack through the DAG to find the maximum likelihood state sequence
if (direction == FORWARD) {
start_window = n_windows-1;
end_window = -1;
delta = -1;
} else {
start_window = 0;
end_window = n_windows;
delta = 1;
}
last_chr = 0;
unsigned char last_state;
int lookbehind = -delta;
for (i = start_window; i != end_window; i += delta) {
if (max_cn[i] < 0) { lookbehind -= delta; continue; };
if (window_chr[i] != last_chr) {
last_chr = window_chr[i];
ml_state_seq[i] = ml_final_state[window_chr[i]-1];
} else {
ml_state_seq[i] = ml_prev_state[i+lookbehind][last_state];
}
last_state = ml_state_seq[i];
lookbehind = -delta;
}
for (i = 0; i < n_windows; i++)
free(ml_prev_state[i]);
free(ml_prev_state);
free(ml_final_state);
return ml_state_seq;
}
void mask_sequence(int n_windows, char *max_cn,
unsigned char *seq1, unsigned char *seq2) {
int i;
for (i = 0; i < n_windows; i++) {
if (max_cn[i] < 0) continue;
if (seq1[i] != seq2[i]) seq1[i] = NORM;
}
}
void forward_backward(int n_windows,
unsigned char *window_chr,
int *window_start,
int *window_end,
char *max_cn,
double *model_conf,
double **hmm_state_emission_logp,
double cnv_rate,
double mean_cnv_length,
double **forward_scaled_prob,
double **backward_scaled_prob) {
int i, j;
double attenuation;
// emission likelihoods for the window (raw, not log)
double E_del, E_norm, E_dup;
// the forward/backward scaled prob for the last non-filtered window
double prev_del, prev_norm, prev_dup;
double scale_factor;
unsigned char last_chr;
int last_window;
int last_coord;
// compute forward posteriors
last_chr = 0;
for (i = 0; i < n_windows; i++) {
if (max_cn[i] < 0) continue;
E_del = exp(hmm_state_emission_logp[i][DEL] * model_conf[i]);
E_norm = exp(hmm_state_emission_logp[i][NORM] * model_conf[i]);
E_dup = exp(hmm_state_emission_logp[i][DUP] * model_conf[i]);
if (window_chr[i] != last_chr) {
last_chr = window_chr[i];
forward_scaled_prob[i][DEL] = E_del * cnv_rate;
forward_scaled_prob[i][NORM] = E_norm * (1.0 - 2.0*cnv_rate);
forward_scaled_prob[i][DUP] = E_dup * cnv_rate;
} else {
attenuation = exp(-((double)(window_start[i]-last_coord)) / mean_cnv_length);
forward_scaled_prob[i][DEL] =
transition_prob(DEL, DEL, cnv_rate, attenuation) * prev_del;
forward_scaled_prob[i][DEL] +=
transition_prob(NORM, DEL, cnv_rate, attenuation) * prev_norm;
forward_scaled_prob[i][DEL] +=
transition_prob(DUP, DEL, cnv_rate, attenuation) * prev_dup;
forward_scaled_prob[i][DEL] *= E_del;
forward_scaled_prob[i][NORM] =
transition_prob(DEL, NORM, cnv_rate, attenuation) * prev_del;
forward_scaled_prob[i][NORM] +=
transition_prob(NORM, NORM, cnv_rate, attenuation) * prev_norm;
forward_scaled_prob[i][NORM] +=
transition_prob(DUP, NORM, cnv_rate, attenuation) * prev_dup;
forward_scaled_prob[i][NORM] *= E_norm;
forward_scaled_prob[i][DUP] =
transition_prob(DEL, DUP, cnv_rate, attenuation) * prev_del;
forward_scaled_prob[i][DUP] +=
transition_prob(NORM, DUP, cnv_rate, attenuation) * prev_norm;
forward_scaled_prob[i][DUP] +=
transition_prob(DUP, DUP, cnv_rate, attenuation) * prev_dup;
forward_scaled_prob[i][DUP] *= E_dup;
}
scale_factor = forward_scaled_prob[i][DEL] +
forward_scaled_prob[i][NORM] +
forward_scaled_prob[i][DUP];
forward_scaled_prob[i][DEL] /= scale_factor;
forward_scaled_prob[i][NORM] /= scale_factor;
forward_scaled_prob[i][DUP] /= scale_factor;
last_coord = window_start[i];
prev_del = forward_scaled_prob[i][DEL];
prev_norm = forward_scaled_prob[i][NORM];
prev_dup = forward_scaled_prob[i][DUP];
}
// compute backward posteriors
last_chr = 0;
last_window = n_windows;
for (i = n_windows-1; i >= 0; i--) {
if (max_cn[i] < 0) continue;
if (window_chr[i] != last_chr) {
last_chr = window_chr[i];
backward_scaled_prob[i][DEL] = 1.0;
backward_scaled_prob[i][NORM] = 1.0;
backward_scaled_prob[i][DUP] = 1.0;
} else {
E_del = exp(hmm_state_emission_logp[last_window][DEL] * model_conf[last_window]);
E_norm = exp(hmm_state_emission_logp[last_window][NORM] * model_conf[last_window]);
E_dup = exp(hmm_state_emission_logp[last_window][DUP] * model_conf[last_window]);
attenuation = exp(-((double)(last_coord-window_end[i])) / mean_cnv_length);
backward_scaled_prob[i][DEL] =
transition_prob(DEL, DEL, cnv_rate, attenuation) * E_del * prev_del;
backward_scaled_prob[i][DEL] +=
transition_prob(DEL, NORM, cnv_rate, attenuation) * E_norm * prev_norm;
backward_scaled_prob[i][DEL] +=
transition_prob(DEL, DUP, cnv_rate, attenuation) * E_dup * prev_dup;
backward_scaled_prob[i][NORM] =
transition_prob(NORM, DEL, cnv_rate, attenuation) * E_del * prev_del;
backward_scaled_prob[i][NORM] +=
transition_prob(NORM, NORM, cnv_rate, attenuation) * E_norm * prev_norm;
backward_scaled_prob[i][NORM] +=
transition_prob(NORM, DUP, cnv_rate, attenuation) * E_dup * prev_dup;
backward_scaled_prob[i][DUP] =
transition_prob(DUP, DEL, cnv_rate, attenuation) * E_del * prev_del;
backward_scaled_prob[i][DUP] +=
transition_prob(DUP, NORM, cnv_rate, attenuation) * E_norm * prev_norm;
backward_scaled_prob[i][DUP] +=
transition_prob(DUP, DUP, cnv_rate, attenuation) * E_dup * prev_dup;
}
scale_factor = backward_scaled_prob[i][DEL] +
backward_scaled_prob[i][NORM] +
backward_scaled_prob[i][DUP];
backward_scaled_prob[i][DEL] /= scale_factor;
backward_scaled_prob[i][NORM] /= scale_factor;
backward_scaled_prob[i][DUP] /= scale_factor;
last_coord = window_end[i];
last_window = i;
prev_del = backward_scaled_prob[i][DEL];
prev_norm = backward_scaled_prob[i][NORM];
prev_dup = backward_scaled_prob[i][DUP];
}
}