HPPK is an implementation of a Homomorphic Polynomial Public Key (HPPK) system, designed for both Key Encapsulation Mechanisms (KEM) and Digital Signatures (DS). This cryptographic protocol leverages the properties of polynomials to create secure, efficient methods for key exchange and message signing.
The main objectives of HPPK are to provide:
- Secure key encapsulation: Facilitating the secure exchange of symmetric keys.
- Robust digital signatures: Ensuring the authenticity and integrity of messages.
For a detailed explanation of the underlying theory and security proofs, please refer to the research paper.
- Homomorphic Encryption: Allows computations on ciphertexts that result in encrypted outcomes, which match the operations performed on the plaintexts.
- Polynomial-Based Cryptography: Utilizes polynomials to create robust public and private keys.
- Efficient Key Encapsulation Mechanism (KEM): Securely exchanges symmetric keys.
- Strong Digital Signatures (DS): Provides authentication and integrity verification of messages.
- Scalable and Efficient: Suitable for various applications, ranging from small-scale systems to large, complex networks.
$ go install github.com/xtaci/hppk/cmd/hppktool
$ hppktool
HPPK key management tool.
Supports key generation, signing, verification, and secret encryption.
Usage:
hppktool [command]
Available Commands:
completion Generate the autocompletion script for the specified shell
encrypt Encrypts a message from standard input
help Help about any command
keygen Generate an HPPK private/public key pair
sign Sign a message from standard input
verify Verify a message from standard input
Flags:
-h, --help help for hppktool
-s, --silent Suppress non-essential messages
Use "hppktool [command] --help" for more information about a command.
To use HPPK, you need to have Go installed. You can download and install Go from the official website.
-
Clone the repository:
git clone https://github.com/xtaci/hppk.git cd hppk
-
Build the project:
go build
To generate a new pair of private and public keys:
package main
import (
"fmt"
"github.com/xtaci/hppk"
)
func main() {
privateKey, err := hppk.GenerateKey(5)
if err != nil {
fmt.Println("Error generating keys:", err)
return
}
fmt.Println("Private Key:", privateKey)
fmt.Println("Public Key:", privateKey.PublicKey)
}
To encrypt a message using the public key:
package main
import (
"fmt"
"github.com/xtaci/hppk"
)
func main() {
privKey, err := hppk.GenerateKey(10)
if err != nil {
panic(err)
}
pubKey := privKey.Public()
message := []byte("hello world")
kem, err := hppk.Encrypt(pubKey, message)
if err != nil {
panic(err)
}
fmt.Printf("Encrypted KEM: %+v\n", kem)
}
To decrypt the encrypted values using the private key:
package main
import (
"fmt"
"github.com/xtaci/hppk"
)
func main() {
privKey, err := hppk.GenerateKey(10)
if err != nil {
panic(err)
}
pubKey := privKey.Public()
message := []byte("hello world")
kem, err := hppk.Encrypt(pubKey, message)
if err != nil {
panic(err)
}
decryptedMessage, err := privKey.Decrypt(kem)
if err != nil {
panic(err)
}
fmt.Printf("Decrypted Message: %s\n", decryptedMessage)
}
package main
import (
"crypto/sha256"
"fmt"
"github.com/xtaci/hppk"
)
func main() {
privKey, err := hppk.GenerateKey(10)
if err != nil {
panic(err)
}
digest := sha256.Sum256([]byte("hello world"))
signature, err := privKey.Sign(digest[:])
if err != nil {
panic(err)
}
fmt.Printf("Signature: %+v\n", signature)
}
package main
import (
"crypto/sha256"
"fmt"
"github.com/xtaci/hppk"
)
func main() {
privKey, err := hppk.GenerateKey(10)
if err != nil {
panic(err)
}
pubKey := privKey.Public()
digest := sha256.Sum256([]byte("hello world"))
signature, err := privKey.Sign(digest[:])
if err != nil {
panic(err)
}
isValid := hppk.VerifySignature(signature, digest[:], pubKey)
fmt.Printf("Signature valid: %v\n", isValid)
}
Contributions are welcome! Please open an issue or submit a pull request for any improvements, bug fixes, or additional features.
This project is licensed under the GPLv3 License. See the LICENSE file for details.
- QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography with Galois Permutation Group (https://arxiv.org/pdf/2402.01852).
- Homomorphic Polynomial Public Key Cryptography for Quantum-secure Digital Signature (https://www.academia.edu/123150574/Homomorphic_Polynomial_Public_Key_Cryptography_for_Quantum_secure_Digital_Signature?email_work_card=view-paper)
Special thanks to the authors of the research paper for their groundbreaking work on HPPK and its applications in KEM and DS.