This package contains the source code implementation of the paper "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper).
Inferring good generation orders in natural sequences is challenging. In our main contribution, we propose Variational Order Inference (VOI), which can be efficiently trained to discover autoregressive sequence generation orders in a data driven way without a domain-specific prior.
In VOI, the encoder permutation generator generates non-monotonic autoregressive orders as the latent variable, and the decoder autoregressive (language) model maximizes the joint probability of generating the target sequence under these non-monotonic orders. In conditional text generation tasks, the encoder is implemented as Transformer with non-causal attention, and the decoder is implemented as Transformer-InDIGO (Gu et al., 2019) which generates target sequences through insertion.
To install this package, first download the package from github, then install it using pip. For CUDA 10.1 (as configured in setup.py
), the package versions are Tensorflow 2.3 and PyTorch 1.5, with their corresponding tensorflow_probability
and torchvision
versions. For CUDA 11.0, you may need to change the package versions in setup.py
to be tensorflow==2.4
, torch==1.6
, tensorflow_probability==0.12.1
, and torchvision==0.7.0
.
git clone https://github.com/xuanlinli17/autoregressive_inference
cd autoregressive_inference
pip install -e .
Install helper packages for word tokenization and part of speech tagging. Enter the following statements into the python interpreter where you have installed our package.
import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('universal_tagset')
Install nlg-eval
that contains several helpful metrics for evaluating image captioning. Tasks other than captioning are evaluated through the vizseq
package we already installed through setup.py
.
pip install git+https://github.com/Maluuba/nlg-eval.git@master
nlg-eval --setup
Clone wmt16-scripts
for machine translation preprocessing.
git clone https://github.com/rsennrich/wmt16-scripts
During training, one process of order inference is to obtain permutation matrices from doubly stochastic matrices. This is accomplished through the Hungarian algorithm. Since tf.py_function
only allows one gpu to run the function at any time, multi-gpu training is very slow if we use scipy.optimize.linear_sum_assignment
(which requires wrapping it with tf.py_function
to call). Therefore, we use a pre-written Hungarian-op script and compile it through g++ into dynamic library. During runtime, we can import the dynamic library using tensorflow api. This leads to much faster distributed training.
git clone https://github.com/brandontrabucco/tensorflow-hungarian
cd tensorflow-hungarian
make hungarian_op
If you encounter fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory
, this could be resolved via link. The generated op could be found in tensorflow-hungarian/tensorflow_hungarian/python/ops/_hungarian_ops.so
Alternatively, we could also generate the op from the repo munkres-tensorflow
.
git clone https://github.com/mbaradad/munkres-tensorflow
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
g++ -std=c++11 -shared munkres-tensorflow/hungarian.cc -o hungarian.so -fPIC ${TF_CFLAGS[@]} ${TF_LFLAGS[@]} -O2
However, this function requires all entries in a matrix to be different (otherwise some strange behaviors will occur), so we also need to uncomment the line sample_permu = sample_permu * 1000 + tf.random.normal(tf.shape(sample_permu)) * 1e-7
in voi/nn/layers/permutation_sinkhorn.py
In this section, we will walk you through how to create a training dataset, using COCO 2017 as an example. In the first step, download COCO 2017 here. Place the extracted .json
annotations at ~/annotations
and the images at ~/train2017
and ~/val2017
for the training and validation set respectively.
Create a part of speech tagger first. This information is used to visualize the generation orders of captions learnt by our model, and is not used during training.
cd {this_repo}
python scripts/data/create_tagger.py --out_tagger_file tagger.pkl
Extract COCO 2017 into a format compatible with our package. There are several arguments that you can specify to control how the dataset is processed. You may leave all arguments as default except out_caption_folder
and annotations_file
.
python scripts/data/extract_coco.py --out_caption_folder ~/captions_train2017 --annotations_file ~/annotations/captions_train2017.json
python scripts/data/extract_coco.py --out_caption_folder ~/captions_val2017 --annotations_file ~/annotations/captions_val2017.json
Process the COCO 2017 captions and extract integer features on which to train a non sequential model. There are again several arguments that you can specify to control how the captions are processed. You may leave all arguments as default except out_feature_folder
and in_folder
, which depend on where you extracted the COCO dataset in the previous step. Note that if vocab_file
doesn't exist before, it will be automatically generated. Since we have provided the train2017_vocab.txt
we used to train our model, this vocab file will be directly loaded to create integer representations of tokens.
python scripts/data/process_captions.py --out_feature_folder ~/captions_train2017_features --in_folder ~/captions_train2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --min_word_frequency 5 --max_length 100
python scripts/data/process_captions.py --out_feature_folder ~/captions_val2017_features --in_folder ~/captions_val2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --max_length 100
Process images from the COCO 2017 dataset and extract features using a pretrained Faster RCNN FPN backbone from pytorch checkpoint. Note this script will distribute inference across all visible GPUs on your system. There are several arguments you can specify, which you may leave as default except out_feature_folder
and in_folder
, which depend on where you extracted the COCO dataset.
python scripts/data/process_images.py --out_feature_folder ~/train2017_features --in_folder ~/train2017 --batch_size 4
python scripts/data/process_images.py --out_feature_folder ~/val2017_features --in_folder ~/val2017 --batch_size 4
Finally, convert the processed features into a TFRecord format for efficient training. Record where you have extracted the COCO dataset in the previous steps and specify out_tfrecord_folder
, caption_folder
and image_folder
at the minimum.
python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/train2017_tfrecords \
--caption_folder ~/captions_train2017_features --image_folder ~/train2017_features --samples_per_shard 4096
python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/val2017_tfrecords \
--caption_folder ~/captions_val2017_features --image_folder ~/val2017_features --samples_per_shard 4096
For convenience, we ran the script from NL2code to extract the cleaned dataset from drive and place them in django_data
. The vocab file djangovocab.txt
is also in that directory. Alternatively, you may download raw data from ase15-django and run python scripts/data/extract_django.py --data_dir {path to all.anno and all.code)
Next, process the Django dataset into TFRecord format for efficient training.
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_django.py --data_folder ./django_data \
--vocab_file ./django_data/djangovocab.txt --dataset_type train/dev/test \
--out_feature_folder ./django_data
CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_django.py --out_tfrecord_folder ./django_data \
--dataset_type train/dev/test --feature_folder ./django_data
First, extract the dataset and learn byte-pair encoding.
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_gigaword.py --data_dir {dataroot}
cd {dataroot}/gigaword
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt
Then, generate the vocab file, and use this vocab file to convert tokens into integers and store in a feature file. Alternately you may use the gigaword_vocab.txt
provided in our repo, which we used to train our model. To do this, set the following --vocab_file
argument to be {this_repo}/gigaword_vocab.txt
.
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_gigaword.py --out_feature_folder {dataroot}/gigaword \
--data_folder {dataroot}/gigaword --vocab_file {dataroot}/gigaword/gigaword_vocab.txt (or {this_repo}/gigaword_vocab.txt) \
--dataset_type train/validation/test
Finally, generate the train/validation/test tfrecords files.
CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_gigaword.py --out_tfrecord_folder {dataroot}/gigaword \
--feature_folder {dataroot}/gigaword --samples_per_shard 4096 --dataset_type train/validation/test
Here, we use WMT16 Ro-En as an example.
First extract the dataset and learn byte-pair encoding.
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot}
cd {dataroot}/wmt16_translate/ro-en
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt
Extract corpus with truecase to train the truecaser, which is used for evaluation.
git clone https://github.com/moses-smt/mosesdecoder
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot} --truecase
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/src_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.ro
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/tgt_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.en
Remove the diacritics of Romanian:
git clone https://github.com/rsennrich/wmt16-scripts
cd {dataroot}/wmt16_translate/ro-en/
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_train.BPE.txt > src_train.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_validation.BPE.txt > src_validation.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_test.BPE.txt > src_test.BPE.txt
------------Note-------------
In practice, training with the sequence-level distillation dataset (Link) generated using the L2R model with beam size 5 leads to about 2 BLEU improvement on WMT16 Ro-En, intuitively because the target sequences in this new dataset are more consistent. We release the this distilled dataset here. To use this dataset, put src_distillation.BPE.txt
and tgt_distillation.BPE.txt
in {dataroot}/wmt16_translate/ro-en/
. Training on this distilled dataset obtains very similar ordering observations (i.e. the model generates all descriptive tokens before generating the auxillary tokens) compared to training on the original dataset.
-----------------------------
Generate the vocab file (joint vocab for the source and target languages), and use this vocab file to convert tokens into integers and store in a feature file. Since we forgot to remove the diacritics during our initial experiments and we appended all missing vocabs in the diacritics-removed corpus afterwards, the vocab file we used to train our model is slightly different from the one generated through the scripts below, so we have uploaded the vocab file we used to train our model as ro_en_vocab.txt
. To use this vocab file, set the following --vocab_file
argument to be {this_repo}/ro_en_vocab.txt
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_wmt.py --out_feature_folder {dataroot}/wmt16_translate/ro-en \
--data_folder {dataroot}/wmt16_translate/ro-en --vocab_file {dataroot}/wmt16_translate/ro_en_vocab.txt (or {this_repo}/ro_en_vocab.txt) \
--dataset_type distillation/train/validation/test
Finally, generate the distillation/train/validation/test tfrecords files.
CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_wmt.py --out_tfrecord_folder {dataroot}/wmt16_translate/ro-en \
--feature_folder {dataroot}/wmt16_translate/ro-en --samples_per_shard 4096 --dataset_type distillation/train/validation/test
Please see training_scripts.md for details about training a model.
Please see evaluation_visualization_scripts.md for details about validating / testing a model, along with visualizing the generalization orders of a model.
We have provided pretrained models for each task here. You may make a directory ckpt_pretrain
under this repo and download them under this directory.
To evaluate the pretrained models and visualize their generalization orders, please see eval_visualize_pretrained_models.md for details.
@inproceedings{li2021autoregressiveinference,
title={Discovering Non-monotonic Autoregressive Orderings with Variational Inference},
author={Li, Xuanlin and Trabucco, Brandon and Park, Dong Huk and Luo, Michael and Shen, Sheng and Darrell, Trevor and Gao, Yang},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=jP1vTH3inC}
}
DBLP:
@inproceedings{DBLP:conf/iclr/LiTPLSD021,
author = {Xuanlin Li and
Brandon Trabucco and
Dong Huk Park and
Michael Luo and
Sheng Shen and
Trevor Darrell and
Yang Gao},
title = {Discovering Non-monotonic Autoregressive Orderings with Variational
Inference},
booktitle = {9th International Conference on Learning Representations, {ICLR} 2021,
Virtual Event, Austria, May 3-7, 2021},
publisher = {OpenReview.net},
year = {2021},
url = {https://openreview.net/forum?id=jP1vTH3inC},
biburl = {https://dblp.org/rec/conf/iclr/LiTPLSD021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}