Skip to content

Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

License

Notifications You must be signed in to change notification settings

xuanyuan14/Reformulation-Aware-Metrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reformulation-Aware-Metrics

THUIR License made-with-python code-size

Introduction

This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper.

Requirements

  • python 2.7
  • sklearn
  • scipy

Data Preparation

Preprocess two datasets TianGong-SS-FSD and TianGong-Qref into the the following format:

[Reformulation Type]<tab>[Click List]<tab>[Usefulness List]<tab>[Satisfaction Label]
  • Reformulation Type: A (Add), D (Delete), K (Keep), T (Transform or Change), O (Others), F (First Query).
  • Click List: 1 -- Clicked, 0 -- Not Clicked.
  • Usefulness List: Usefulness or Relevance, 4-scale in TianGong-QRef, 5-scale in TianGong-SS-FSD.
  • Satisfaction Label: 5-scale for both datasets.

Then, bootsrap them into N samples and put the bootstapped data (directories) into ./data/bootstrap_fsd and ./data/bootstrap_qref.

Results

The results for each metrics are shown in the following table:

Metric Qref-Spearman Qref-Pearson Qref-MSE FSD-Spearman FSD-Pearson FSD-MSE
RBP 0.4375 0.4180 N/A 0.4898 0.5222 N/A
DCG 0.4434 0.4182 N/A 0.5022 0.5290 N/A
BPM 0.4552 0.3915 N/A 0.5801 0.6052 N/A
RBP sat 0.4389 0.4170 N/A 0.5165 0.5527 N/A
DCG sat 0.4446 0.4166 N/A 0.5047 0.5344 N/A
BPM sat 0.4622 0.3674 N/A 0.5960 0.6029 N/A
rrDBN 0.4123 0.3670 1.1508 0.5908 0.5602 1.0767
rrSDBN 0.4177 0.3713 1.1412 0.5991 0.5703 1.0524
uUBM 0.4812 0.4303 1.0607 0.6242 0.5775 0.8795
uPBM 0.4827 0.4369 1.0524 0.6210 0.5846 0.8644
uSDBN 0.4837 0.4375 1.1443 0.6290 0.6081 0.8840
uDBN 0.4928 0.4458 1.0801 0.6339 0.6207 0.8322

To reproduce the results of traditional metrics such as RBP, DCG and BPM, we recommend you to use this repo: cwl_eval. 🤗

Quick Start

To train RAMs, run the script as follows:

python run.py --click_model DBN \
	--data qref --id 0 \
	--metric_type expected_utility \
	--max_usefulness 3 \
	--k_num 6 \
	--max_dnum 10 \
	--iter_num 10000 \
	--alpha 0.01 \
	--alpha_decay 0.99 \
	--lamda 0.85 \
	--patience 5 \
	--use_knowledge
  • click_model: options: ['DBN', 'SDBN', 'UBM', 'PBM']
  • data: options: ['fsd', 'qref']
  • metric_type: options: ['expected_utility', 'effort']
  • id: the bootstrapped sample id.
  • k_num: the number of user intent shift type will be considered, should be less than or equal to six.
  • max_dnum: the maximum number of top documents to be considered for a specific query.
  • use_knowledge: whether to use the transition probability from syntactic reformulation types to intent-level ones derived from the TianGong-Qref dataset.

Citation

If you find the resources in this repo useful, please do not save your star and cite our work:

@inproceedings{chen2021incorporating,
  title={Incorporating Query Reformulating Behavior into Web Search Evaluation},
  author={Chen, Jia and Liu, Yiqun and Mao, Jiaxin and Zhang, Fan and Sakai, Tetsuya and Ma, Weizhi and Zhang, Min and Ma, Shaoping},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={171--180},
  year={2021}
}

Contact

If you have any questions, please feel free to contact me via chenjia0831@gmail.com or open an issue.

About

Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published