1. Calculate the interaction between species.
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b123.bacteria.abundance.csv data / interaction / b2.hn.b123
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b101112.bacteria.abundance.csv data / interaction / b2.hn.b101112
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b131415.bacteria.abundance.csv data / interaction / b2.hn.b131415
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b161718.bacteria.abundance.csv data / interaction / b2.hn.b161718
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b192021.bacteria.abundance.csv data / interaction / b2.hn.b192021
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b222324.bacteria.abundance.csv data / interaction / b2.hn.b222324
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b456.bacteria.abundance.csv data / interaction / b2.hn.b456
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b2.hn.b789.bacteria.abundance.csv data / interaction / b2.hn.b789
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b101112.bacteria.abundance.csv data / interaction / b1.ln.b101112
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b123.bacteria.abundance.csv data / interaction / b1.ln.b123
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b131415.bacteria.abundance.csv data / interaction / b1.ln.b1314115
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b161718.bacteria.abundance.csv data / interaction / b1.ln.b161718
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b192021.bacteria.abundance.csv data / interaction / b1.ln.b192021
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b222324.bacteria.abundance.csv data / interaction / b1.ln.b222324
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b456.bacteria.abundance.csv data / interaction / b1.ln.b456
Rscript script / a1.calculate_alpamatrix.with.plot.r data / abandence / b1.ln.b789.bacteria.abundance.csv data / interaction / b1.ln.b789
2. merge interaction table.
cd data/interaction/
cat b1* interaction.csv > b3.ln.interaction.csv
grep -v ' ""' b3.ln.interaction.csv > b3.ln.csv
cut -f 2,3,4 -d ' ,' b3.ln.csv > b3.ln.interaction.csv
rm b3.ln.csv
cat b2* interaction.csv > b4.hn.interaction.csv
grep -v ' ""' b4.hn.interaction.csv > b4.hn.csv
cut -f 2,3,4 -d ' ,' b4.hn.csv > b4.hn.interaction.csv
rm b4.hn.csv
cd ../..
3. Annotation pathway and gene in bacteria.
abun=' data/otu/16s.abun.tsv'
fasta=' data/otu/16s_sequence.fa'
output=' data/otu/mic'
python script/otu2abun.py -i data/otu/16s_sequence.fa -o data/otu/16s.abun.tsv
echo " MicFunPred_run_pipeline.py -i ${abun} -r ${fasta} -o ${output} -t 10 --verbose"
MicFunPred_run_pipeline.py -i ${abun} -r ${fasta} -o ${output} -t 10 --verbose
cp ${output} /
4. extract useful message from annotation files.
cp data/annotation/mic/out.blast data/annotation/species.txt
cp data/annotation/mic/CAZymes_metagenome/CAZymes_metagenome.tsv.gz data/annotation
cp data/annotation/mic/COG_metagenome/COG_metagenome.tsv.gz data/annotation
cp data/annotation/mic/KO_metagenome/KEGG_pathways_MinPath_prunned.tsv.gz data/annotation
cp data/annotation/mic/KO_metagenome/KO_metagenome_MinPath_prunned.tsv.gz data/annotation
cp data/annotation/mic/MetaCyc_metagenome/Pathway_summarize_by_Types.tsv.gz data/annotation/cyc.tsv.gz
cp data/annotation/mic/Pfam_metagenome/Pfam_metagenome.tsv.gz data/annotation
cp data/annotation/mic/TIGRFAM_metagenome/TIGRFAM_metagenome.tsv.gz data/annotation
gunzip data/annotation/CAZymes_metagenome.tsv.gz
gunzip data/annotation/COG_metagenome.tsv.gz
gunzip data/annotation/KEGG_pathways_MinPath_prunned.tsv.gz
gunzip data/annotation/KO_metagenome_MinPath_prunned.tsv.gz
gunzip data/annotation/cyc.tsv.gz
gunzip data/annotation/Pfam_metagenome.tsv.gz
gunzip data/annotation/TIGRFAM_metagenome.tsv.gz
cut -f 1,2 data/annotation/species.txt > data/annotation/species_name.txt
6. combine pathway with interaction.
Rscript script/a2.combine.gene.interaction.r data/annotation/CAZymes_metagenome.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.cazymes
Rscript script/a2.combine.gene.interaction.r data/annotation/COG_metagenome.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.cog
Rscript script/a2.combine.gene.interaction.r data/annotation/KEGG_pathways_MinPath_prunned.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.kegg
Rscript script/a2.combine.gene.interaction.r data/annotation/KO_metagenome_MinPath_prunned.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.ko
Rscript script/a2.combine.gene.interaction.r data/annotation/Pfam_metagenome.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.pfam
Rscript script/a2.combine.gene.interaction.r data/annotation/TIGRFAM_metagenome.tsv data/interaction/b3.ln.interaction.csv data/ml/ln.ml.tigrfam
#
Rscript script/a2.combine.gene.interaction.r data/annotation/CAZymes_metagenome.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.cazymes
Rscript script/a2.combine.gene.interaction.r data/annotation/COG_metagenome.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.cog
Rscript script/a2.combine.gene.interaction.r data/annotation/KEGG_pathways_MinPath_prunned.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.kegg
Rscript script/a2.combine.gene.interaction.r data/annotation/KO_metagenome_MinPath_prunned.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.ko
Rscript script/a2.combine.gene.interaction.r data/annotation/Pfam_metagenome.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.pfam
Rscript script/a2.combine.gene.interaction.r data/annotation/TIGRFAM_metagenome.tsv data/interaction/b4.hn.interaction.csv data/ml/hn.ml.tigrfam
7. prepare machine learning environment.
mamba create -n py38 python=3.8.17
mamba activate py38
mamba install -c creditx hpsklearn
pip install git+https://github.com/hyperopt/hyperopt-sklearn
mamba install -c conda-forge boruta_py
pip install boostaroota
pip install pickle
pip install shap
pip install matplotlib
pip install seaborn
pip install tensorflow
pip install pydot
pip install graphviz
pip install numpy==1.23
# pip install numpy==1.23.5
pip install plotly
#! /bin/bash
# SBATCH -o /public/home/2022122/xugang/condaenv/BCP/script/cazy_1.%j.out
# SBATCH -e /public/home/2022122/xugang/condaenv/BCP/script/cazy_1.%j.error
# SBATCH --partition=Gnode
# SBATCH -J carzy
# SBATCH -N 1
# SBATCH -n 28
source /public/home/2022122/xugang/bashrc
conda run -n py38 python learn_code_meaning.py