forked from OdingdongO/pytorch_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2018_AL_defect_train.py
120 lines (106 loc) · 5 KB
/
2018_AL_defect_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#coding=utf-8
import os
import pandas as pd
from sklearn.model_selection import train_test_split
from dataset.AL_defect_dataset import collate_fn, dataset,get_image_pd
import torch
import torch.utils.data as torchdata
from torchvision import datasets, models, transforms
from torchvision.models import resnet50,resnet101
from models.multiscale_resnet import multiscale_resnet
import torch.optim as optim
from torch.optim import lr_scheduler
from utils.train_util import train, trainlog
from torch.nn import CrossEntropyLoss
import logging
from dataset.data_aug import *
import sys
import argparse
from dataset.AL_defect_dataset import defect_label
reload(sys)
sys.setdefaultencoding('utf8')
'''
https://tianchi.aliyun.com/competition/information.htm?spm=5176.11165268.5678.2.7d4910c5YfrwzY&raceId=231682
'''
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=8, help='size of each image batch')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
parser.add_argument('--checkpoint_dir', type=str, default='/media/hszc/model/detao/models/AL/resnet50', help='directory where model checkpoints are saved')
parser.add_argument('--cuda_device', type=str, default="2,3", help='whether to use cuda if available')
parser.add_argument('--net', dest='net',type=str, default='resnet50',help='resnet101,resnet50')
parser.add_argument('--resume', type=str, default=None, help='path to resume weights file')
parser.add_argument('--epochs', type=int, default=30, help='number of epochs')
parser.add_argument('--start_epoch', type=int, default=0, help='number of start epoch')
parser.add_argument('--save_checkpoint_val_interval', type=int, default=300, help='interval between saving model weights')
parser.add_argument('--print_interval', type=int, default=100, help='interval between print log')
parser.add_argument('--img_root_train', type=str, default= "/media/hszc/model/detao/data/guangdong/guangdong_round1_train2_2018091622/瑕疵样本", help='whether to img root')
parser.add_argument('--n_cpu', type=int, default=4, help='number of cpu threads to use during batch generation')
opt = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.cuda_device
if __name__ == '__main__':
# # saving dir
save_dir = opt.checkpoint_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
logfile = '%s/trainlog.log' % save_dir
trainlog(logfile)
all_pd= get_image_pd(opt.img_root_train)
train_pd,val_pd = train_test_split(all_pd, test_size=0.1, random_state=53,stratify=all_pd["label"])
print(val_pd.shape)
'''数据扩增'''
data_transforms = {
'train': Compose([
Resize(size=(640, 640)),
FixRandomRotate(bound='Random'),
RandomHflip(),
RandomVflip(),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]),
'val': Compose([
Resize(size=(640, 640)),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_set = {}
data_set['train'] = dataset( anno_pd=train_pd, transforms=data_transforms["train"])
data_set['val'] = dataset( anno_pd=val_pd, transforms=data_transforms["val"])
dataloader = {}
dataloader['train']=torch.utils.data.DataLoader(data_set['train'], batch_size=opt.batch_size,
shuffle=True, num_workers=2*opt.n_cpu,collate_fn=collate_fn)
dataloader['val']=torch.utils.data.DataLoader(data_set['val'], batch_size=4,
shuffle=True, num_workers=opt.n_cpu,collate_fn=collate_fn)
'''model'''
if opt.net == "resnet50":
model =resnet50(pretrained=True)
model.avgpool = torch.nn.AdaptiveAvgPool2d(output_size=1)
model.fc = torch.nn.Linear(model.fc.in_features,61)
elif opt.net == "resnet101":
model =resnet101(pretrained=True)
model.avgpool = torch.nn.AdaptiveAvgPool2d(output_size=1)
model.fc = torch.nn.Linear(model.fc.in_features,61)
if opt.resume:
model.eval()
logging.info('resuming finetune from %s' % opt.resume)
try:
model.load_state_dict(torch.load(opt.resume))
model = torch.nn.DataParallel(model)
except KeyError:
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load(opt.resume))
else:
model = torch.nn.DataParallel(model)
model = model.cuda()
optimizer = optim.SGD(model.parameters(), lr=opt.learning_rate, momentum=0.9, weight_decay=1e-5)
criterion = CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
train(model,
epoch_num=opt.epochs,
start_epoch=opt.start_epoch,
optimizer=optimizer,
criterion=criterion,
exp_lr_scheduler=exp_lr_scheduler,
data_set=data_set,
data_loader=dataloader,
save_dir=save_dir,
print_inter=opt.print_interval,
val_inter=opt.save_checkpoint_val_interval)