Skip to content

y-richie-y/no_eating_no_drinking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Resuming training from saved state

  • python3 training_pipeline.py "model/2020-03-28_22-39-28/epoch0_batch11.par"

Generate scores for a model at different stages throughout its training

  • python3 gen_scores.py <model_path> <dataset_file_path.json> [optional eval freq.] [optional eval start step]
  • Concrete example (training set): python3 gen_scores.py ./model/MI1_dropout_encodings_only/ preprocessing/data/subset-1/train-subset-1.json 2000 50000 -- this will eval model at step 50000, 52000, 54000, ... up to the most recent one.
  • Concrete example (dev set): python3 gen_scores.py ./model/MI1_dropout_encodings_only/ preprocessing/data/dev-v2.0.json
  • The dataset file path needs to be something.json and have a corresponding something-tokenized.json for this script to work!
  • The script will generate a file scores_<datasetname>.log in the model folder, as well as two plots (EM and F1).
  • To copy the plots to your computer run: scp -T guest@138.19.43.95:"'Documents/no_eating_no_drinking/model/MI1_dropout_encodings_only/plot_loss_vs_em_score(train-subset-1).png'" . && scp -T guest@138.19.43.95:"'Documents/no_eating_no_drinking/model/MI1_dropout_encodings_only/plot_loss_vs_f1_score(train-subset-1).png'" . && (or same but with dev-v2 replacing train-subset-1).

Produce answer file for evaluation

  • Generate predictions on SQuAD dev set: python3 produce_answers.py model/2020-04-01_01-07-06/epoch0_batch791.par
  • Generate predictions on a different dataset: python3 produce_answers.py model/2020-04-01_01-07-06/epoch0_batch791.par preprocessing/data/subset-1/train-subset-1-tokenized.json [optional_prediction_file_path]
  • Run evaluation: python3 evaluate-v2.0.py preprocessing/data/subset-1/train-subset-1.json predictions.json

Plot F1 score and loss together

  • First generate the scores log file using gen_scores.py (see separate instructions for that).
  • Then: python3 plot_f1_vs_loss.py model/mymodel/scores_train-subset-1.log.

Existing impl (atulkum)

Colab training setup

TODOs

  • #f03c15 Add your past contributions or nearest-future work here. (everyone)
  • Move tests to seperate file (Richie)
  • Implement model (everyone)
  • Enable cuda usage (Kuba)
  • Get forward pass to run (Kuba)
  • Get backward pass to run (Kuba -- this was quick)
  • Debug why predicted end indices are all 0 (Richie)
  • Complete batching (Asmita)
  • Create word2id, id2word, embedding matrix (Asmita)
  • Training pipeline (Asmita + Kuba + Richie + Dip)
  • Model serialisation (Kuba + Richie)
  • Debug retain_graph error (Dip)
  • Debug training issues (Dip with help from Kuba and Richie)
  • Quick script to evaluate latest version of a model automatically (Kuba?)
  • Ablation tests:
    • single iteration for s/e indices instead of 4.
    • smaller HIDDEN_DIM
    • try removing some modules or replacing them with something simpler, e.g. coattention with some fully connected layers.
    • Think of more ablation tests. Take ones from the paper.
  • Plots:
    • Automate computation of F1/EM scores throughout a model's evolution (training) (Kuba)
    • Plotting F1/EM scores on top of loss (Kuba)
    • Prepare loss tables (discussed in the gdoc)
    • Plotting scores depending on true span length (Dip)
  • Generate predictions for evaluation (TODO batching if needed, better conversion from tokens to answer strings, load serialised model) (Dip)

Final stretch doc:

Our older links

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published