Y Qian, K Chen, J Nikkanen, JK Kamarainen, J Matas
ICCV 2017
Y Qian, J Käpylä, JK Kämäräinen, S Koskinen, J Matas
ECCV-W 2020
This implementation uses Pytorch.
Please install Anaconda firstly.
git clone https://github.com/yanlinqian/Temporal-Color-Constancy.git
cd Temporal-Color-Constancy
## Create python env with relevant packages
conda create --name Temporal-Color-Constancy python=3.6
source activate Temporal-Color-Constancy
pip install -U pip
pip install -r requirements.txt
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch # cudatoolkit=10.0 for cuda10
Tested on pytorch >= 1.0 and python3.
Burst Color Constancy Dataset:
- Download the all zip files from the website and unzip them, you will get 400 folders (sequences) in train folder, 200 in test folder.
- Move the train folder and test folder into
./data/
, without creating subfolders. - Run
img2npy_temporal.py
to convert all pngs to npy files, which will be used to feed the bcc-net.
Open the visdom service
python -m visdom.server -p 8008
- Train the rcc-net:
python ./rcc_net/train_rccnet.sh
- Train the bcc-net
python ./rcc_net/train_bccnet.sh
- To reproduce the results reported in the paper, move the pretrained models to
./trained_models/
, and then test model directly.
python ./test/test_rccnet.py --pth_path0 ./trained_models/rccnet/fold0.pth
python ./test/test_bccnet.py --pth_path0 ./trained_models/bccnet/fold0.pth