-
Install Docker following the instructions on the link and nvidia-docker (for gpu support).
-
Clone this repo
-
Build Docker Container
docker build . -t reinforcement_planning
source run_docker.sh
python3 train.py --config-file configs/sac.yaml # You can replace sac.yaml by ddpg.yaml or ppo.yaml
You can modify the .yaml config file to experiment with static/dynamic obstacles, number of obstacles, etc.
python3 eval.py --experiment sac/00 # You can replace sac by ddpg or ppo
The number 00 can be replaced by the id of the folder where the experiment is saved. (For every training, a new folder is created with an increasing number)
Testing differential model:
python3 eval.py --experiment sac/00_diff # You can replace sac by ddpg or ppo
tensorboard --logdir ./experiments
-
Create conda environment
conda create -n "reinforcement_planning" python=3.8.10
-
Activate conda environmnet
conda activate reinforcement_planning
-
Install dependencies
python -m pip install -r requirements.txt
-
Install pytorch
pip install --no-cache-dir torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
-
Install further packages
python -m pip install -e nav2D-envs/ python -m pip install -e rlkit/