-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalexnet.py
130 lines (94 loc) · 4.61 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import tensorflow as tf
import numpy as np
class AlexNet(object):
def __init__(self, x, keep_prob, num_classes, skip_layer,
weights_path='DEFAULT'):
self.X = x
self.NUM_CLASSES = num_classes
self.KEEP_PROB = keep_prob
self.SKIP_LAYER = skip_layer
if weights_path == 'DEFAULT':
self.WEIGHTS_PATH = 'bvlc_alexnet.npy'
else:
self.WEIGHTS_PATH = weights_path
self.create()
def create(self):
conv1 = conv(self.X, 11, 11, 96, 4, 4, padding='VALID', name='conv1')
pool1 = max_pool(conv1, 3, 3, 2, 2, padding='VALID', name='pool1')
norm1 = lrn(pool1, 2, 2e-05, 0.75, name='norm1')
conv2 = conv(norm1, 5, 5, 256, 1, 1, groups=2, name='conv2')
pool2 = max_pool(conv2, 3, 3, 2, 2, padding='VALID', name='pool2')
norm2 = lrn(pool2, 2, 2e-05, 0.75, name='norm2')
conv3 = conv(norm2, 3, 3, 384, 1, 1, name='conv3')
conv4 = conv(conv3, 3, 3, 384, 1, 1, groups=2, name='conv4')
conv5 = conv(conv4, 3, 3, 256, 1, 1, groups=2, name='conv5')
pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID', name='pool5')
flattened = tf.reshape(pool5, [-1, 6*6*256])
fc6 = fc(flattened, 6*6*256, 4096, name='fc6')
dropout6 = dropout(fc6, self.KEEP_PROB)
fc7 = fc(dropout6, 4096, 4096, name='fc7')
dropout7 = dropout(fc7, self.KEEP_PROB)
self.fc8 = fc(dropout7, 4096, self.NUM_CLASSES, relu=False, name='fc8')
self.fc8_softmax = tf.nn.softmax( self.fc8 )
def load_initial_weights(self, session):
try:
weights_dict = np.load(self.WEIGHTS_PATH, encoding='bytes').item()
except EOFError:
print "no file found"
for op_name in weights_dict:
if op_name not in self.SKIP_LAYER:
with tf.variable_scope(op_name, reuse=True):
for data in weights_dict[op_name]:
# Biases
if len(data.shape) == 1:
var = tf.get_variable('biases', trainable=False)
session.run(var.assign(data))
# Weights
else:
var = tf.get_variable('weights', trainable=False)
session.run(var.assign(data))
def conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name,
padding='SAME', groups=1):
input_channels = int(x.get_shape()[-1])
convolve = lambda i, k: tf.nn.conv2d(i, k,
strides=[1, stride_y, stride_x, 1],
padding=padding)
with tf.variable_scope(name) as scope:
weights = tf.get_variable('weights', shape=[filter_height,
filter_width,
input_channels/groups,
num_filters])
biases = tf.get_variable('biases', shape=[num_filters])
if groups == 1:
conv = convolve(x, weights)
else:
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
weight_groups = tf.split(axis=3, num_or_size_splits=groups,
value=weights)
output_groups = [convolve(i, k) for i, k in zip(input_groups, weight_groups)]
conv = tf.concat(axis=3, values=output_groups)
bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list())
relu = tf.nn.relu(bias, name=scope.name)
return relu
def fc(x, num_in, num_out, name, relu=True):
with tf.variable_scope(name) as scope:
weights = tf.get_variable('weights', shape=[num_in, num_out],
trainable=True)
biases = tf.get_variable('biases', [num_out], trainable=True)
act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)
if relu:
relu = tf.nn.relu(act)
return relu
else:
return act
def max_pool(x, filter_height, filter_width, stride_y, stride_x, name,
padding='SAME'):
return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1],
strides=[1, stride_y, stride_x, 1],
padding=padding, name=name)
def lrn(x, radius, alpha, beta, name, bias=1.0):
return tf.nn.local_response_normalization(x, depth_radius=radius,
alpha=alpha, beta=beta,
bias=bias, name=name)
def dropout(x, keep_prob):
return tf.nn.dropout(x, keep_prob)