-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwavepacket.py
48 lines (37 loc) · 1.42 KB
/
wavepacket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import sys
sys.path.append('..')
import pywp
grid = pywp.mgrid[-10:10:0.05]
P0 = 20
# Tully1
def tully1(R):
return pywp.build_pe_tensor(
0.01*(1 - np.exp(-1.6*R[0])) * (R[0] >= 0) - 0.01*(1 - np.exp(1.6*R[0])) * (R[0] < 0),
0.005*np.exp(-R[0]**2),
symmetric=True
)
# Run
pp = pywp.preprocess(tully1, grid, wavepacket=lambda R: np.exp(-(R[0]+5)**2 + 1j*P0*R[0]), c0=0, M=2000, dt=0.1)
displayer = pywp.visualize.WavepacketDisplayer1D()
writer = pywp.snapshot.SnapshotWriter('traj-tully1-p20.trj')
populations = []
pop_trans = pywp.expec.PositionFunc(lambda R: R[0] > 0, normalization='none')
pywp.propagate(pp, nstep=12000, output_step=1000,
on_output=[
lambda para, cp: populations.append(pop_trans(para, cp)),
displayer,
writer
],
checkend=True,
boundary=lambda R: R[0] < 9,
)
writer.close()
print('Transmitted population: ', populations[-1])
# Post-processing
snapshots = pywp.load_file('traj-tully1-p20.trj')
R = snapshots.get_R_grid()
for j in range(len(snapshots)):
s = snapshots[j]
print('At snapshot {}, state populations = '.format(j), np.sum(np.abs(s)**2 * (R[0] > 0)[...,None], axis=0) / np.sum(np.abs(s)**2))
# pywp.visualize.visualize_snapshot_1d(snapshots)