Skip to content

Latest commit

 

History

History
67 lines (51 loc) · 1.51 KB

Triangle.md

File metadata and controls

67 lines (51 loc) · 1.51 KB

Task description A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:

A[P] + A[Q] > A[R],
A[Q] + A[R] > A[P],
A[R] + A[P] > A[Q].

For example, consider array A such that:

  A[0] = 10    A[1] = 2    A[2] = 5
  A[3] = 1     A[4] = 8    A[5] = 20

Triplet (0, 2, 4) is triangular.

Write a function:

function solution(A);

that, given a zero-indexed array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.

For example, given array A such that:

  A[0] = 10    A[1] = 2    A[2] = 5
  A[3] = 1     A[4] = 8    A[5] = 20

the function should return 1, as explained above. Given array A such that:

  A[0] = 10    A[1] = 50    A[2] = 5
  A[3] = 1

the function should return 0.

Assume that:

N is an integer within the range [0..100,000]; each element of array A is an integer within the range [−2,147,483,648..2,147,483,647]. Complexity:

expected worst-case time complexity is O(N*log(N)); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified.

function solution(A) {
    A.sort((a, b) => (a - b))
    
    for (var i = 0; i < A.length - 2; i++) {
        var p = A[i],
            q = A[i + 1],
            r = A[i + 2]

        if (p + q > r &&
            q + r > p &&
            r + p > q)
            return 1
    }
    
    return 0
}