Task description A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
A[P] + A[Q] > A[R],
A[Q] + A[R] > A[P],
A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
Triplet (0, 2, 4) is triangular.
Write a function:
function solution(A);
that, given a zero-indexed array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5
A[3] = 1
the function should return 0.
Assume that:
N is an integer within the range [0..100,000]; each element of array A is an integer within the range [−2,147,483,648..2,147,483,647]. Complexity:
expected worst-case time complexity is O(N*log(N)); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified.
function solution(A) {
A.sort((a, b) => (a - b))
for (var i = 0; i < A.length - 2; i++) {
var p = A[i],
q = A[i + 1],
r = A[i + 2]
if (p + q > r &&
q + r > p &&
r + p > q)
return 1
}
return 0
}