-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdanet_res152.py
298 lines (270 loc) · 12.6 KB
/
danet_res152.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
from DAN_ResNet.danet import DANet
model_urls = {
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
# 基于F.conv2d自己建的Conv2d类,其中F.conv2d仅仅只是卷积操作,而nn.Conv2d是卷积层类
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
def forward(self, x):
# return super(Conv2d, self).forward(x)
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
keepdim=True).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
# ResNet中的block类型,指的是1x1,3x3,1x1三种卷积混合的模式,采用先降维再升维,降低计算复杂度
class Bottleneck(nn.Module):
expansion = 4 # 在block最后升维的倍数,恢复原来的通道数
# 这里的planes不再是网络中的输出通道数,而是在block中降维的输出通道数
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, conv=None, norm=None):
super(Bottleneck, self).__init__()
self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm(planes)
self.conv2 = conv(planes, planes, kernel_size=3, stride=stride,
dilation=dilation, padding=dilation, bias=False)
self.bn2 = norm(planes)
self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = norm(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
# 此处的downsample利用1x1卷积来改变通道数,使残差块的连接可以直接相加
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# deeplabv3的ASPP模块
class ASPP(nn.Module):
def __init__(self, C, depth, num_classes, conv=nn.Conv2d, norm=nn.BatchNorm2d, momentum=0.0003, mult=1):
super(ASPP, self).__init__()
self._C = C # 进入aspp的通道数
self._depth = depth # filter的个数
self._num_classes = num_classes
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.relu = nn.ReLU(inplace=True)
# 第一个1x1卷积
self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False)
# aspp中的空洞卷积,rate=6,12,18
self.aspp2 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(6*mult), padding=int(6*mult),
bias=False)
self.aspp3 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(12*mult), padding=int(12*mult),
bias=False)
self.aspp4 = conv(C, depth, kernel_size=3, stride=1,
dilation=int(18*mult), padding=int(18*mult),
bias=False)
# 对最后一个特征图进行全局平均池化,再feed给256个1x1的卷积核,都带BN
self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False)
self.aspp1_bn = norm(depth, momentum)
self.aspp2_bn = norm(depth, momentum)
self.aspp3_bn = norm(depth, momentum)
self.aspp4_bn = norm(depth, momentum)
self.aspp5_bn = norm(depth, momentum)
# 先上采样双线性插值得到想要的维度,再进入下面的conv
self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1,
bias=False)
self.bn2 = norm(depth, momentum)
# 打分分类
self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1)
def forward(self, x):
x1 = self.aspp1(x)
x1 = self.aspp1_bn(x1)
x1 = self.relu(x1)
x2 = self.aspp2(x)
x2 = self.aspp2_bn(x2)
x2 = self.relu(x2)
x3 = self.aspp3(x)
x3 = self.aspp3_bn(x3)
x3 = self.relu(x3)
x4 = self.aspp4(x)
x4 = self.aspp4_bn(x4)
x4 = self.relu(x4)
x5 = self.global_pooling(x)
x5 = self.aspp5(x5)
x5 = self.aspp5_bn(x5)
x5 = self.relu(x5)
# 上采样:双线性插值使x得到想要的维度
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode='bilinear',
align_corners=True)(x5)
# 经过aspp之后,concat之后通道数变为了5倍
x = torch.cat((x1, x2, x3, x4, x5), 1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
return x
# 基于ResNet的deeplabv3
class ResNet(nn.Module):
def __init__(self, block, block_num, num_classes, num_groups=None, weight_std=False, beta=False, pretrained=False):
self.inplanes = 64 # 控制残差块的输入通道数 planes:输出通道数
# nn.BatchNorm2d和nn.GroupNorm两种不同的归一化方法
self.norm = nn.BatchNorm2d
self.conv = Conv2d if weight_std else nn.Conv2d
super(ResNet, self).__init__()
if not beta:
# 整个ResNet的第一个conv
self.conv1 = self.conv(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
else:
# 第一个残差模块的conv
self.conv1 = nn.Sequential(
self.conv(3, 64, 3, stride=2, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
self.conv(64, 64, 3, stride=1, padding=1, bias=False))
self.bn1 = self.norm(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 建立残差块部分
self.layer1 = self._make_layer(block, 64, block_num[0])
self.layer2 = self._make_layer(block, 128, block_num[1], stride=2)
self.layer3 = self._make_layer(block, 256, block_num[2], stride=2)
# block4开始为dilation空洞卷积
self.layer4 = self._make_layer(block, 512, block_num[3], stride=1, dilation=2)
# danet模块替换aspp
self.danet = DANet(num_classes, 512 * block.expansion)
# aspp,512 * block.expansion是经过残差模块的输出通道数
#self.aspp = ASPP(512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm)
# 遍历模型进行初始化
for m in self.modules():
if isinstance(m, self.conv): #isinstance:m类型判断 若当前组件为 conv
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n)) #正太分布初始化
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm): #若为batchnorm
m.weight.data.fill_(1) #weight为1
m.bias.data.zero_() #bias为0
if pretrained:
self._load_pretrained_model()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
# stride!=1 代表后续残差块中有stride=2,尺寸大小改变,所以第一个残差块中的stride也该用来修改尺寸
if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
self.conv(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, dilation=max(1, dilation/2), bias=False),
self.norm(planes * block.expansion),
)
# laysers 存放产生的残差块,最后根据此列表进行生成网络
layers = []
# 在多个残差块中,只有第一个残差块的输入输出通道不一致,所以先单独添加带downsample的block
layers.append(block(self.inplanes, planes, stride, downsample, dilation=max(1, dilation/2), conv=self.conv, norm=self.norm))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation, conv=self.conv, norm=self.norm))
return nn.Sequential(*layers)
def forward(self, x):
# x.shape:[batch_size, channels, H, w]
size = (x.shape[2], x.shape[3])
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# ASPP
#x = self.aspp(x)
# danet返回的结果是一个list
x = self.danet(x)
#x = x.reshape(-1, x.shape[1])
x = nn.Upsample(size, mode='bilinear', align_corners=True)(x)
return x
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url(model_urls['resnet152'])
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
# 实例化模型
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
# [3,4,6,3]对应block_num,残差块的数量
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=4, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, num_groups=None, weight_std=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=4,num_groups=num_groups, weight_std=weight_std, **kwargs)
if pretrained:
model_dict = model.state_dict()
if num_groups and weight_std:
pretrained_dict = torch.load('data/R-101-GN-WS.pth.tar')
overlap_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
assert len(overlap_dict) == 312
elif not num_groups and not weight_std:
pretrained_dict = model_zoo.load_url(model_urls['resnet101'])
overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
else:
raise ValueError('Currently only support BN or GN+WS')
model_dict.update(overlap_dict)
model.load_state_dict(model_dict)
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], num_classes=4, pretrained=pretrained, **kwargs)
return model
if __name__ == "__main__":
net = resnet152()
x = torch.rand((4,3,320,320))
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
net = net.to(device)
x = x.to(device)
output = net(x)
print(output.shape)
'''
# 如下测试,不会执行最后的unsample步骤,所以shape不和原来一样
x = torch.rand((4,3,640,640))
for name, layer in net.named_children():
x = layer(x)
print(name, ' output shape:\t', x.shape)
'''
'''
上述测试的输出
conv1 output shape: torch.Size([4, 64, 320, 320])
bn1 output shape: torch.Size([4, 64, 320, 320])
relu output shape: torch.Size([4, 64, 320, 320])
maxpool output shape: torch.Size([4, 64, 160, 160])
layer1 output shape: torch.Size([4, 256, 160, 160])
layer2 output shape: torch.Size([4, 512, 80, 80])
layer3 output shape: torch.Size([4, 1024, 40, 40])
layer4 output shape: torch.Size([4, 2048, 40, 40])
aspp output shape: torch.Size([4, 5, 40, 40])
'''