-
Notifications
You must be signed in to change notification settings - Fork 5
/
main_recom.py
93 lines (74 loc) · 3.27 KB
/
main_recom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import time
import copy
import torch
import numpy as np
import pandas as pd
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train_recom_model(model, criterion, optimizer, scheduler, dataset_sizes, dataloaders, root_path, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_loss_per_epoch = []
val_loss_per_epoch = []
val_acc = []
for epoch in range(num_epochs):
train_loss_per_iter = []
val_loss_per_iter = []
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train']:
# for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for (inputs, labels) in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
train_loss_per_iter.append(loss.item())
else:
val_loss_per_iter.append(loss.item())
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
train_loss_per_epoch.append(np.mean(train_loss_per_iter))
val_loss_per_epoch.append(np.mean(val_loss_per_iter))
val_acc.append(best_acc)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
torch.save(model.state_dict(), 'save/recom_model/model_recom_3.pt')
summary = pd.concat((pd.Series(train_loss_per_epoch).to_frame('Train'),
pd.Series(val_loss_per_epoch).to_frame('Val'),
pd.Series(val_acc).to_frame('Accuracy')), axis=1)
summary.to_csv(f'{root_path}/save/log/recom_log.csv')
return model