-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathexport_model.py
30 lines (24 loc) · 1.3 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import argparse
import functools
from ppyoloe.trainer import PPYOLOETrainer
from ppyoloe.utils.logger import setup_logger
from ppyoloe.utils.utils import add_arguments, print_arguments
logger = setup_logger(__name__)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('model_type', str, 'M', '所使用的模型类型', choices=["X", "L", "M", "S"])
add_arg('use_gpu', bool, True, '是否使用GPU')
add_arg('num_classes', int, 80, '分类的类别数量')
add_arg('image_shape', str, '3,640,640', '导出模型图像输入大小')
add_arg('save_model_path', str, 'models/', '导出模型保存的路径')
add_arg('resume_model', str, 'models/PPYOLOE_M/best_model', '恢复模型文件夹路径')
args = parser.parse_args()
print_arguments(args)
# 获取训练器
trainer = PPYOLOETrainer(model_type=args.model_type,
num_classes=args.num_classes,
use_gpu=args.use_gpu)
# 导出预测模型
trainer.export(save_model_path=args.save_model_path,
image_shape=args.image_shape,
resume_model=args.resume_model)