-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbuffer.py
109 lines (91 loc) · 4.53 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
class ReplayBuffer:
def __init__(
self,
buffer_size,
obs_shape,
obs_dtype,
action_dim,
action_dtype,
):
self.max_size = buffer_size
self.obs_shape = obs_shape
self.obs_dtype = obs_dtype
self.action_dim = action_dim
self.action_dtype = action_dtype
self.ptr = 0
self.size = 0
self.observations = np.zeros((self.max_size,) + self.obs_shape, dtype=obs_dtype)
self.next_observations = np.zeros((self.max_size,) + self.obs_shape, dtype=obs_dtype)
self.actions = np.zeros((self.max_size, self.action_dim), dtype=action_dtype)
self.rewards = np.zeros((self.max_size, 1), dtype=np.float32)
self.terminals = np.zeros((self.max_size, 1), dtype=np.float32)
def add(self, obs, next_obs, action, reward, terminal):
# Copy to avoid modification by reference
self.observations[self.ptr] = np.array(obs).copy()
self.next_observations[self.ptr] = np.array(next_obs).copy()
self.actions[self.ptr] = np.array(action).copy()
self.rewards[self.ptr] = np.array(reward).copy()
self.terminals[self.ptr] = np.array(terminal).copy()
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def load_dataset(self, dataset):
observations = np.array(dataset["observations"], dtype=self.obs_dtype)
next_observations = np.array(dataset["next_observations"], dtype=self.obs_dtype)
actions = np.array(dataset["actions"], dtype=self.action_dtype)
rewards = np.array(dataset["rewards"]).reshape(-1, 1)
terminals = np.array(dataset["terminals"], dtype=np.float32).reshape(-1, 1)
self.observations = observations
self.next_observations = next_observations
self.actions = actions
self.rewards = rewards
self.terminals = terminals
self.ptr = len(observations)
self.size = len(observations)
def add_batch(self, obs, next_obs, actions, rewards, terminals):
batch_size = len(obs)
if self.ptr + batch_size > self.max_size:
begin = self.ptr
end = self.max_size
first_add_size = end - begin
self.observations[begin:end] = np.array(obs[:first_add_size]).copy()
self.next_observations[begin:end] = np.array(next_obs[:first_add_size]).copy()
self.actions[begin:end] = np.array(actions[:first_add_size]).copy()
self.rewards[begin:end] = np.array(rewards[:first_add_size]).copy()
self.terminals[begin:end] = np.array(terminals[:first_add_size]).copy()
begin = 0
end = batch_size - first_add_size
self.observations[begin:end] = np.array(obs[first_add_size:]).copy()
self.next_observations[begin:end] = np.array(next_obs[first_add_size:]).copy()
self.actions[begin:end] = np.array(actions[first_add_size:]).copy()
self.rewards[begin:end] = np.array(rewards[first_add_size:]).copy()
self.terminals[begin:end] = np.array(terminals[first_add_size:]).copy()
self.ptr = end
self.size = min(self.size + batch_size, self.max_size)
else:
begin = self.ptr
end = self.ptr + batch_size
self.observations[begin:end] = np.array(obs).copy()
self.next_observations[begin:end] = np.array(next_obs).copy()
self.actions[begin:end] = np.array(actions).copy()
self.rewards[begin:end] = np.array(rewards).copy()
self.terminals[begin:end] = np.array(terminals).copy()
self.ptr = end
self.size = min(self.size + batch_size, self.max_size)
def sample(self, batch_size):
batch_indices = np.random.randint(0, self.size, size=batch_size)
return {
"observations": self.observations[batch_indices].copy(),
"actions": self.actions[batch_indices].copy(),
"next_observations": self.next_observations[batch_indices].copy(),
"terminals": self.terminals[batch_indices].copy(),
"rewards": self.rewards[batch_indices].copy()
}
def sample_all(self):
return {
"observations": self.observations[:self.size].copy(),
"actions": self.actions[:self.size].copy(),
"next_observations": self.next_observations[:self.size].copy(),
"terminals": self.terminals[:self.size].copy(),
"rewards": self.rewards[:self.size].copy()
}