-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_mean_transmittance.py
56 lines (42 loc) · 1.88 KB
/
plot_mean_transmittance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import host_subplot
import common_settings
import mean_transmittance
import median_transmittance
lya_center = 1215.67
settings = common_settings.Settings() # type: common_settings.Settings
enable_median_transmittance = False
def do_plot():
m = mean_transmittance.MeanTransmittance.from_file(settings.get_mean_transmittance_npy())
ar_z, mean = m.get_weighted_mean_with_minimum_count(1)
# low_pass_mean = m.get_low_pass_mean()[1]
fig = plt.figure(figsize=(14, 10))
ax1 = fig.add_subplot(2, 1, 1)
ax2 = ax1.twiny()
ax1.plot(ar_z, mean)
# ax1.plot(ar_z, low_pass_mean, color='red')
if enable_median_transmittance:
med = median_transmittance.MedianTransmittance.from_file(settings.get_median_transmittance_npy())
ar_z_med, ar_median = med.get_weighted_median_with_minimum_count(1)
ar_z_med, ar_unweighted_median = med.get_weighted_median_with_minimum_count(1, weighted=False)
ax1.plot(ar_z_med, ar_median, color='orange')
ax1.plot(ar_z_med, ar_unweighted_median, color='green')
ax1.set_ylabel(r"$\left< f_q(z)/C_q(z) \right> $")
plt.ylim(0.0, 1.2)
# add wavelength tick marks on top
x_lim2 = tuple([lya_center * (1 + z) for z in ax1.get_xlim()])
ax2.set_xlim(x_lim2)
plt.axis()
ax3 = host_subplot(2, 1, 2)
ax4 = ax3.twinx()
ax4.set_ylabel(r"$N_{\rm Spectra}$")
ax3.plot(m.ar_z, m.ar_total_flux, color='blue', label=r"Total flux$\times$ weight")
ax3.plot(m.ar_z, m.ar_weights, ':', color='green', label='Total weight')
ax4.plot(m.ar_z, m.ar_count, ':', color='red', label='Spectra count')
ax3.set_xlim(ax1.get_xlim())
ax3.set_ylabel(r"$\sum_q f_q(z)/C_q(z)$", fontsize=12)
ax3.set_xlabel(r"$z$", fontsize=12)
ax3.legend(loc='upper right', prop={'size': 9})
plt.show()
if __name__ == '__main__':
do_plot()