-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathREADME.Rmd
122 lines (88 loc) · 3.07 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# gratis <img src="man/figures/logo.PNG" align="right" height="210"/>
<!-- badges: start -->
[![R build status](https://github.com/ykang/gratis/workflows/R-CMD-check/badge.svg)](https://github.com/ykang/gratis/actions)
[![](https://cranlogs.r-pkg.org/badges/gratis)](https://CRAN.R-project.org/package=gratis)
<!-- badges: end -->
The R package `gratis` (previously known as `tsgeneration`) provides efficient algorithms for generating time series with
diverse and controllable characteristics.
## Installation
### [CRAN version]( https://CRAN.R-project.org/package=gratis)
```r
install.packages("gratis")
```
### Development version
You can install the **development** version of `gratis` package from [GitHub
Repository](https://github.com/ykang/gratis) with:
``` r
devtools::install_github("ykang/gratis")
```
## Usage
### Tutorial video
Watch [this Youtube video](https://www.youtube.com/watch?v=F3lWECtFa44) provided by [Prof. Rob Hyndman](https://robjhyndman.com/).
### Load the package
```{r, message=FALSE}
library(gratis)
library(feasts)
```
### Generate diverse time series
```{r}
set.seed(1)
mar_model(seasonal_periods=12) %>%
generate(length=120, nseries=2) %>%
autoplot(value)
```
### Generate mutiple seasonal time series
```{r}
mar_model(seasonal_periods=c(24, 24*7)) %>%
generate(length=24*7*10, nseries=12) %>%
autoplot(value)
```
### Generate time series with controllable features
```{r, message=FALSE}
library(dplyr)
# Function to return spectral entropy, and ACF at lags 1 and 2
# given a numeric vector input
my_features <- function(y) {
c(tsfeatures::entropy(y), acf = acf(y, plot = FALSE)$acf[2:3, 1, 1])
}
# Produce series with entropy = 0.5, ACF1 = 0.9 and ACF2 = 0.8
df <- generate_target(
length = 60, feature_function = my_features, target = c(0.5, 0.9, 0.8)
)
df %>%
as_tibble() %>%
group_by(key) %>%
summarise(value = my_features(value),
feature=c("entropy","acf1", "acf2"),
.groups = "drop")
autoplot(df)
```
### Web application
You can also run the time series generation procedure in a shiny app
``` r
app_gratis()
```
Or visit our [online Shiny APP](https://ebsmonash.shinyapps.io/tsgeneration/)
## See also
- R package `tsfeatures` from [GitHub Repository](https://github.com/robjhyndman/tsfeatures).
## References
- Kang, Y., Hyndman, R.J, and Li, F. (2020). **GRATIS**: **G**ene**RA**ting **TI**me **S**eries with
diverse and controllable characteristics. [Statistical Analysis and Data Mining](https://doi.org/10.1002/sam.11461).
## License
This package is free and open source software, licensed under GPL-3.
## Acknowledgements
Feng Li and Yanfei Kang are supported by the National Natural Science Foundation of China
(No. 11501587 and No. 11701022 respectively). Rob J Hyndman is supported by the Australian
Centre of Excellence in Mathematical and Statistical Frontiers.