-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_ddp.py
704 lines (632 loc) · 36.5 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
import sys
import math
import random
import logging
import numbers
import argparse
from pathlib import Path
from datetime import datetime
from contextlib import nullcontext
import cv2
import time
import torch.cuda
import numpy as np
from torch import nn
from loguru import logger
from torch.cuda import amp
import torch.optim as optim
import torch.nn.functional as F
from torchinfo import summary as ModelSummary
from torchnet.meter import AverageValueMeter
import torch.optim.lr_scheduler as lr_scheduler
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
current_work_directionary = Path('__file__').parent.absolute()
sys.path.insert(0, str(current_work_directionary))
from config import Config
from loss import CrossEntropyAndBCELoss, CrossEntropyAndDiceLoss
from utils import maybe_mkdir, clear_dir, get_rank, all_reduce_norm, SegMetirc2D
from utils import ExponentialMovingAverageModel, occupy_mem, is_parallel
from utils import summary_model, get_local_rank, adjust_status
from data import build_train_dataloader, build_val_dataloader, build_testdataloader
from utils import catch_warnnings, get_world_size, configure_omp, configure_nccl, print_config
from utils import save_seg, resize_segmentation, configure_module, synchronize, MeterBuffer
from nets import UPerNet, USquareNetExeriment
import gc
class Training:
def __init__(self, hyp):
configure_nccl()
configure_omp()
# parameters
self.hyp = hyp
self.select_device()
self.local_rank = get_local_rank()
self.device = "cuda:{}".format(self.local_rank)
self.hyp['device'] = self.device
self.rank = get_rank()
self.use_cuda = True if torch.cuda.is_available() else False
self.is_distributed = get_world_size() > 1
if dist.is_available() and dist.is_initialized():
batch_size = self.hyp['batch_size'] // dist.get_world_size()
else:
batch_size = self.hyp['batch_size']
self.lr = self.hyp['basic_lr_per_img'] * batch_size
self.hyp['lr'] = self.lr
self.cwd = Path('./').absolute()
self.hyp['current_work_dir'] = str(self.cwd)
self.meter = MeterBuffer()
# 确保输入图片的shape必须能够被32整除(因为网络会对输入的image进行32倍的下采样),如果不满足条件则对设置的输入shape进行调整
self.hyp['input_img_size'] = self.padding(self.hyp['input_img_size'], 32)
self.dst_size = self.hyp['input_img_size']
accumulate = self.get_local_accumulate_step()
self.hyp['weight_decay'] *= self.hyp['batch_size'] * accumulate / 64 # 当实际等效的batch_size大于64时,增大weight_decay
# cpu不支持fp16训练
self.data_type = torch.float16 if self.hyp['fp16'] and self.use_cuda else torch.float32
self.before_train()
# cudnn settings
if not self.hyp['mutil_scale_training'] and self.hyp['device'] == 'cuda':
# 对于输入数据的维度恒定的网络,使用如下配置可加速训练
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# config warmup step
if self.hyp['do_warmup']:
self.hyp['warmup_steps'] = max(self.hyp.get('warmup_epoch', 3) * len(self.traindataloader), 1000)
def load_dataset(self, is_training):
if is_training:
dataset, dataloader, prefetcher = build_train_dataloader(img_dir=self.hyp['train_img_dir'],
seg_dir=self.hyp["train_seg_dir"],
batch_size=self.hyp['batch_size'],
drop_last=self.hyp['drop_last'],
dst_size=self.hyp['input_img_size'],
data_aug_hyp=self.hyp,
seed=self.hyp['random_seed'],
pin_memory=self.hyp['pin_memory'],
num_workers=self.hyp['num_workers'],
enable_data_aug=False,
cache_num=self.hyp['cache_num']
)
else:
dataset, dataloader, prefetcher = build_val_dataloader(img_dir=self.hyp['val_img_dir'],
seg_dir=self.hyp["val_seg_dir"],
batch_size=self.hyp['batch_size'],
dst_size=self.hyp['input_img_size'],
num_workers=self.hyp['num_workers'],
cache_num=self.hyp['cache_num']
)
return dataset, dataloader, prefetcher
def _init_logger(self, model):
model_summary = summary_model(model, self.hyp['input_img_size'], verbose=True)
logger = logging.getLogger(f"UPerNet_Rank_{self.rank}")
formated_config = print_config(self.hyp) # record training parameters in log.txt
logger.setLevel(logging.INFO)
txt_log_path = str(self.cwd / 'log' / f'log_rank_{self.rank}' / f'log_{self.model.__class__.__name__}_{datetime.now().strftime("%Y%m%d-%H:%M:%S")}_{self.hyp["log_postfix"]}.txt')
maybe_mkdir(Path(txt_log_path).parent)
handler = logging.FileHandler(txt_log_path)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info("\n" + formated_config)
msg = f"\n{'=' * 70} Model Summary {'=' * 70}\n"
msg += f"Model Summary:\tlayers {model_summary['number_layers']}; parameters {model_summary['number_params']}; gradients {model_summary['number_gradients']}; flops {model_summary['flops']}GFLOPs"
msg += f"\n{'=' * 70} Training {'=' * 70}\n"
logger.info(msg)
return logger
@staticmethod
def padding(hw, factor=32):
if isinstance(hw, numbers.Real):
hw = [hw, hw]
else:
assert len(hw) == 2, f"input image size's format should like (h, w)"
h, w = hw
h_mod = h % factor
w_mod = w % factor
if h_mod > 0:
h = (h // factor + 1) * factor
if w_mod > 0:
w = (w // factor + 1) * factor
return h, w
def _init_optimizer(self, model):
param_group_weight, param_group_bias, param_group_other = [], [], []
for m in model.modules():
if hasattr(m, "bias") and isinstance(m.bias, nn.Parameter):
param_group_bias.append(m.bias)
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
param_group_other.append(m.weight)
elif hasattr(m, 'weight') and isinstance(m.weight, nn.Parameter):
param_group_weight.append(m.weight)
lr = self.lr
if self.hyp['optimizer_type'].lower() == "sgd":
optimizer = optim.SGD(params=param_group_other, lr=lr, nesterov=True, momentum=self.hyp['optimizer_momentum'])
elif self.hyp['optimizer_type'].lower() == "adam":
optimizer = optim.Adam(params=param_group_other, lr=lr, betas=(self.hyp['optimizer_momentum'], 0.999), eps=self.hyp['eps'])
elif self.hyp['optimizer_type'].lower() == "adamw":
optimizer = optim.AdamW(params=param_group_other, lr=lr, betas=(self.hyp['optimizer_momentum'], 0.999), eps=self.hyp['eps'], weight_decay=0.0)
else:
RuntimeError(f"Unkown optim_type {self.hyp['optimizer_type']}")
optimizer.add_param_group({"params": param_group_weight, "weight_decay": self.hyp['weight_decay']})
optimizer.add_param_group({"params": param_group_bias, "weight_decay": 0.0})
del param_group_weight, param_group_bias, param_group_other
return optimizer
def _init_bias(self):
"""
初始化模型参数,主要是对detection layers的bias参数进行特殊初始化,参考RetinaNet那篇论文,这种初始化方法可让网络较容易度过前期训练困难阶段
(使用该初始化方法可能针对coco数据集有效,在对global wheat数据集的测试中,该方法根本train不起来)
"""
for m in self.model.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
m.eps = 1e-3
m.momentum = 0.03
elif isinstance(m, (nn.LeakyReLU, nn.ReLU, nn.ReLU6)):
m.inplace = True
def _init_scheduler(self, optimizer, trainloader):
if self.hyp['scheduler_type'].lower() == "onecycle": # onecycle lr scheduler
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, epochs=self.hyp['total_epoch'], steps_per_epoch=len(trainloader), three_phase=True)
elif self.hyp['scheduler_type'].lower() == 'linear': # linear lr scheduler
max_ds_rate = 0.01
linear_lr = lambda epoch: (1 - epoch / (self.hyp['total_epoch'] - 1)) * (1. - max_ds_rate) + max_ds_rate # lr_bias越大lr的下降速度越慢,整个epoch跑完最后的lr值也越大
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=linear_lr)
else: # consin lr scheduler
max_ds_rate = 0.01 # 整个训练过程中lr的最小值等于: max_ds_rate * init_lr
cosin_lr = lambda epoch: ((1 + math.cos(epoch * math.pi / self.hyp['total_epoch'])) / 2) * (1. - max_ds_rate) + max_ds_rate # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=cosin_lr)
return scheduler
def before_train(self):
occupy_mem(self.local_rank)
# datasets
self.traindataset, self.traindataloader, self.trainprefetcher = self.load_dataset(is_training=True)
self.valdataset , self.valdataloader , self.valprefetcher = self.load_dataset(is_training=False)
self.testdataset , self.testdataloader , self.testprefetcher = build_testdataloader(self.hyp['test_img_dir'], self.hyp['input_img_size'], num_workers=self.hyp['num_workers'])
self.hyp['num_class'] = self.traindataset.num_class
self.scaler = amp.GradScaler(enabled=self.use_cuda) # mix precision training
self.total_loss_meter = AverageValueMeter()
torch.cuda.set_device(self.local_rank)
model = USquareNetExeriment(in_channel=3, num_class=self.hyp['num_class'])
ModelSummary(model, input_size=(1, 3, self.hyp['input_img_size'][0], self.hyp['input_img_size'][1]), device=next(model.parameters()).device)
self.optimizer = self._init_optimizer(model)
self.lr_scheduler = self._init_scheduler(self.optimizer, self.traindataloader)
if self.rank == 0:
self.writer = SummaryWriter(log_dir=str(self.cwd / 'log' / f'log_rank_{self.rank}'))
model = model.to(self.device)
# load pretrained model
self.load_model(model, None, self.optimizer, self.lr_scheduler, self.scaler, 'cpu')
# loss function
self.loss_fcn = CrossEntropyAndDiceLoss(num_class=self.hyp['num_class'])
if self.is_distributed:
model = DDP(model, device_ids=[self.local_rank], broadcast_buffers=False)
if self.hyp['do_ema']:
self.ema_model = ExponentialMovingAverageModel(model)
self.model = model
self.logger = self._init_logger(model)
self.metric = SegMetirc2D()
def warmup(self, epoch, tot_step):
lr_bias = self.hyp['warmup_bias_lr']
linear_lr = lambda epoch: (1. - epoch / (self.hyp['total_epoch'] - 1.)) * (1. - lr_bias) + lr_bias # lr_bias越大lr的下降速度越慢,整个epoch跑完最后的lr值也越大
if self.hyp['do_warmup'] and tot_step < self.hyp["warmup_steps"]:
self.accumulate = int(max(1, np.interp(tot_step,
[0., self.hyp['warmup_steps']],
[1, self.get_local_accumulate_step()]).round()))
# optimizer有3各param_group, 分别是parm_other, param_weight, param_bias
for j, para_g in enumerate(self.optimizer.param_groups):
if j != 2: # param_other and param_weight(该部分参数的learning rate逐渐增大)
para_g['lr'] = np.interp(tot_step,
[0., self.hyp['warmup_steps']],
[0., para_g['initial_lr'] * linear_lr(epoch)])
else: # param_bias(该部分参数的learning rate逐渐减小,因为warmup_bias_lr大于initial_lr)
para_g['lr'] = np.interp(tot_step,
[0., self.hyp['warmup_steps']],
[self.hyp['warmup_bias_lr'], para_g['initial_lr'] * linear_lr(epoch)])
if "momentum" in para_g: # momentum(momentum在warmup阶段逐渐增大)
para_g['momentum'] = np.interp(tot_step,
[0., self.hyp['warmup_steps']],
[self.hyp['warmup_momentum'], self.hyp['optimizer_momentum']])
@logger.catch
@catch_warnnings
def step(self):
self.optimizer.zero_grad()
tot_loss_before = float('inf')
self.model.zero_grad()
per_epoch_iters = len(self.traindataloader)
for cur_epoch in range(1, self.hyp['total_epoch']+1):
torch.cuda.empty_cache()
self.model.train()
for i in range(per_epoch_iters):
start_time = time.time()
if self.use_cuda:
x = self.trainprefetcher.next()
else:
x = next(self.traindataloader)
data_end_time = time.time()
cur_step = i + 1
tot_step = per_epoch_iters * cur_epoch + i + 1
img = x['img'].to(self.data_type) # (bn, 3, h, w)
gt_seg = x['seg'].to(self.data_type) # (bn, 1, h, w)
gt_seg.requires_grad = False
img, gt_seg = self.mutil_scale_training(img, gt_seg)
self.warmup(cur_epoch, tot_step) # 在warmup期间lr_scheduler只有记录作用, 真正改变lr的还是warmup操作
my_context = self.model.no_sync if self.is_distributed and cur_step % self.accumulate != 0 else nullcontext
with my_context():
with amp.autocast(enabled=self.use_cuda):
preds = self.model(img)
loss_dict = self.loss_fcn(preds, gt_seg)
loss_dict['total_loss'] /= self.accumulate
loss_dict['total_loss'] *= get_world_size()
iter_end_time = time.time()
tot_loss = loss_dict['total_loss']
self.scaler.scale(tot_loss).backward()
if cur_step % self.accumulate == 0:
# self.scaler.unscale_(self.optimizer)
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.hyp['do_ema']:
self.ema_model.update(self.model)
iter_time = iter_end_time - start_time
data_time = data_end_time - start_time
is_best = tot_loss.item() < tot_loss_before
self.update_meter(cur_epoch, cur_step, tot_step, img.size(2), img.size(0), iter_time, data_time, loss_dict, is_best)
self.update_summarywriter()
self.show_tbar(tot_step)
self.cal_metric(tot_step)
self.save_model(cur_epoch, tot_step, tot_loss, True)
self.test(tot_step, cur_epoch)
tot_loss_before = tot_loss.item()
del x, img, gt_seg, tot_loss, preds, loss_dict
if self.hyp['scheduler_type'].lower() == "onecycle":
self.lr_scheduler.step() # 因为self.accumulate会从1开始增长, 因此第一次执行训练时self.optimizer.step()一定会在self.lr_scheduler.step()之前被执行
if self.hyp['scheduler_type'].lower() != "onecycle":
self.lr_scheduler.step()
gc.collect()
def update_meter(self, cur_epoch, cur_step, tot_step, input_dim, batch_size, iter_time, data_time, loss_dict, is_best):
self.meter.update(iter_time = iter_time,
data_time = data_time,
input_dim = input_dim,
cur_step = cur_step,
tot_step = tot_step,
cur_epoch = cur_epoch,
batch_size = batch_size,
is_best = is_best,
accumulate = self.accumulate,
allo_mem = torch.cuda.memory_allocated() / 2 ** 30 if self.use_cuda else 0.0,
cach_mem = torch.cuda.memory_reserved() / 2 ** 30 if self.use_cuda else 0.0,
lr = [x['lr'] for x in self.optimizer.param_groups][0],
dice = self.meter.get_filtered_meter('dice')['dice'].global_avg if len(self.meter.get_filtered_meter('dice')) > 0 else 0.0,
iou = self.meter.get_filtered_meter('iou')['iou'].global_avg if len(self.meter.get_filtered_meter('iou')) > 0 else 0.0,
fpr = self.meter.get_filtered_meter('fpr')['fpr'].global_avg if len(self.meter.get_filtered_meter('fpr')) > 0 else 0.0,
fnr = self.meter.get_filtered_meter('fnr')['fnr'].global_avg if len(self.meter.get_filtered_meter('fnr')) > 0 else 0.0,
voe = self.meter.get_filtered_meter('voe')['voe'].global_avg if len(self.meter.get_filtered_meter('voe')) > 0 else 0.0,
rvd = self.meter.get_filtered_meter('rvd')['rvd'].global_avg if len(self.meter.get_filtered_meter('rvd')) > 0 else 0.0,
acc = self.meter.get_filtered_meter('acc')['acc'].global_avg if len(self.meter.get_filtered_meter('acc')) > 0 else 0.0,
rank = self.rank,
**loss_dict)
def get_local_batch_size(self):
if dist.is_available() and dist.is_initialized():
return self.hyp['batch_size'] // dist.get_world_size()
return self.hyp['batch_size']
def get_local_accumulate_step(self):
if dist.is_available() and dist.is_initialized():
return self.hyp['accu_batch_size'] / dist.get_world_size() / self.get_local_batch_size()
return self.hyp['accu_batch_size'] / self.get_local_batch_size()
def show_tbar(self, tot_step):
tags = ("total_loss", "dice", 'iou' , 'fnr' , 'fpr' , 'voe' , 'rvd' , 'acc' , "accumulate", "iter_time", "lr" , "cur_epoch", "cur_step", "batch_size", "input_dim", "allo_mem", "cach_mem")
fmts = ('5.3f' , '5.3f', '>5.3f', '>5.3f', '>5.3f', '>5.3f', '>5.3f', '>5.3f', '>02d' , '5.3f' , '5.3e', '>04d' , '>05d' , '>02d' , '>03d' , '5.3f' , '5.3f')
if tot_step % self.hyp['show_tbar_every'] == 0:
show_dict = {}
for tag in tags:
show_dict[tag] = self.meter.get_filtered_meter(tag)[tag].latest
if not math.isnan(show_dict['total_loss']):
log_msg = ''
for tag, fmt in zip(tags, fmts):
log_msg += tag + '=' + '{' + tag + ':' + fmt + '}' + ", "
self.logger.info(log_msg.format(**show_dict))
def postprocess(self, inp, pred_segs, info):
"""
Inputs:
inp: normalization image (bs, 3, h, w)
outputs: (bs, 1, h, w)
info:
Outpus:
"""
assert isinstance(inp, np.ndarray)
assert isinstance(inp, np.ndarray)
processed_segs = []
processed_imgs = []
batch_num = inp.shape[0]
for i in range(batch_num):
pad_top, pad_left = info[i]['pad_top'], info[i]['pad_left']
pad_bot, pad_right = info[i]['pad_bottom'], info[i]['pad_right']
pred = pred_segs[i] # (num_class, h, w)
org_h, org_w = info[i]['org_shape']
cur_h, cur_w = inp[i].shape[1], inp[i].shape[2]
img = np.transpose(inp[i], axes=[1, 2, 0]) # (h, w, 3)
img *= 255.0
img = np.clip(img, 0, 255.0)
img = img.astype(np.uint8)
img = img[pad_top:(cur_h - pad_bot), pad_left:(cur_w - pad_right), :]
img = cv2.resize(img, (org_w, org_h), interpolation=0)
processed_imgs.append(img)
pred = np.argmax(pred_segs[i], axis=0).astype(np.uint8) # (h, w)
pred = pred[pad_top:(cur_h - pad_bot), pad_left:(cur_w - pad_right)]
pred = resize_segmentation(pred, (org_h, org_w))
processed_segs.append(pred)
return processed_imgs, processed_segs
def select_device(self):
if self.hyp['device'].lower() != 'cpu':
if torch.cuda.is_available():
self.hyp['device'] = 'cuda'
# region (GPU Tags)
# 获取当前使用的GPU的属性并打印出来
gpu_num = torch.cuda.device_count()
cur_gpu_id = torch.cuda.current_device()
cur_gpu_name = torch.cuda.get_device_name()
cur_gpu_properties = torch.cuda.get_device_properties(cur_gpu_id)
gpu_total_memory = cur_gpu_properties.total_memory
gpu_major = cur_gpu_properties.major
gpu_minor = cur_gpu_properties.minor
gpu_multi_processor_count = cur_gpu_properties.multi_processor_count
# endregion
msg = f"Use Nvidia GPU {cur_gpu_name}, find {gpu_num} GPU devices, current device id: {cur_gpu_id}, "
msg += f"total memory={gpu_total_memory/(2**20):.1f}MB, major={gpu_major}, minor={gpu_minor}, multi_processor_count={gpu_multi_processor_count}"
print(msg)
else:
self.hyp['device'] = 'cpu'
def update_summarywriter(self):
if self.rank == 0 and self.hyp['enable_tensorboard']:
tot_step = self.meter.get_filtered_meter('tot_step')['tot_step'].latest
for k, v in self.meter.items():
self.writer.add_scalar(tag=f'train/{k}', scalar_value=v.latest, global_step=tot_step)
def mutil_scale_training(self, imgs, segs):
"""
对传入的imgs和相应的targets进行缩放,从而达到输入的每个batch中image shape不同的目的
:param imgs: input image tensor from dataloader / tensor / (bn, 3, h, w)
:param segs: targets of corrding images / tensor / (bn, 1, h, w)
:return:
todo:
随着训练的进行,image size逐渐增大。
"""
if self.hyp['mutil_scale_training']:
input_img_size = max(self.hyp['input_img_size'])
random_shape = random.randrange(int(input_img_size * 0.6), int(input_img_size * 1.2 + 32)) // 32 * 32
scale = random_shape / max(imgs.shape[2:])
if scale != 1.:
new_shape = [math.ceil(x * scale / 32) * 32 for x in imgs.shape[2:]]
imgs = F.interpolate(imgs, size=new_shape, mode='bilinear', align_corners=False)
segs_out = segs.new_zeros([segs.size(0), segs.size(1)] + new_shape)
for i in range(segs.size(0)):
segs_out[i, 0] = torch.from_numpy(resize_segmentation(segs[i][0].detach().cpu().numpy(), new_shape, order=1)).to(self.data_type)
return imgs, segs_out
return imgs, segs
def load_model(self, model, ema_model, optimizer, lr_scheduler, scaler, map_location):
"""
load pretrained model, EMA model, optimizer(注意: __init_weights()方法并不适用于所有数据集)
"""
# self._init_bias()
if self.hyp.get("pretrained_model_path", None):
model_path = self.hyp["pretrained_model_path"]
if Path(model_path).exists():
try:
state_dict = torch.load(model_path, map_location=map_location)
if "model_state_dict" not in state_dict:
print(f"can't load pretrained model from {model_path}")
else: # load pretrained model
model.load_state_dict(state_dict["model_state_dict"])
print(f"use pretrained model {model_path}")
if optimizer is not None and "optim_state_dict" in state_dict and state_dict.get("optim_type", None) == self.hyp['optimizer']: # load optimizer
optimizer.load_state_dict(state_dict['optim_state_dict'])
lr_scheduler.load_state_dict(state_dict['lr_scheduler_state_dict'])
scaler.load_state_dict(state_dict['scaler_state_dict'])
print(f"use pretrained optimizer {model_path}")
if ema_model is not None and "ema" in state_dict: # load EMA model
ema_model.ema.load_state_dict(state_dict['ema'])
print(f"use pretrained EMA model from {model_path}")
else:
print(f"can't load EMA model from {model_path}")
if ema_model is not None and 'ema_update_num' in state_dict:
ema_model.update_num = state_dict['ema_update_num']
del state_dict
except Exception as err:
print(err)
else:
print('training from stratch!')
else:
print('training from stratch!')
def save_model(self, cur_epoch, tot_step, tot_loss, save_optimizer):
if self.rank == 0 and tot_step % int(self.hyp['save_ckpt_every'] * len(self.traindataloader)) == 0:
save_path = str(self.cwd / 'checkpoints' / f'every_upernet.pth')
if not Path(save_path).exists():
maybe_mkdir(Path(save_path).parent)
state_dict = {
"model_state_dict": self.model.state_dict(),
"optim_state_dict": self.optimizer.state_dict() if save_optimizer else None,
"scaler_state_dict": self.scaler.state_dict(),
'lr_scheduler_type': self.hyp['scheduler_type'],
"lr_scheduler_state_dict": self.lr_scheduler.state_dict(),
"optim_type": self.hyp['optimizer_type'],
"loss": tot_loss,
"epoch": cur_epoch,
"step": tot_step,
"ema": self.ema_model.ema.state_dict(),
"ema_update_num": self.ema_model.update_num,
"hyp": self.hyp,
}
torch.save(state_dict, save_path, _use_new_zipfile_serialization=False)
del state_dict
def do_eval_forward(self, imgs):
self.model.eval()
with torch.no_grad():
pred_segs = F.softmax(self.model(imgs.float())['fuse'], dim=1) # (bs, num_class, h, w)
self.model.train()
return pred_segs
def cal_metric(self, tot_step):
if tot_step % int(self.hyp.get('calculate_metric_every', 0.5) * len(self.traindataloader)) == 0:
# 在计算metric指标之前, 先清空之前的所有metric值
metric_tags = ('dice', 'iou', 'fnr', 'fpr', 'voe','rvd', 'acc')
for tag in metric_tags:
if tag in self.meter.keys():
self.meter.get_filtered_meter(tag)[tag].reset()
try:
all_reduce_norm(self.model) # 该函数只对batchnorm和instancenorm有效
except:
pass
if self.hyp['do_ema']:
eval_model = self.ema_model.ema
else:
eval_model = self.model
if is_parallel(eval_model):
eval_model = eval_model.module
with adjust_status(eval_model, training=False):
for j in range(len(self.valdataloader)):
if self.use_cuda:
y = self.valprefetcher.next()
else:
y = next(self.valdataloader)
img = y['img'].to(self.data_type) # (bs, 3, h, w)
gt_seg_numpy = y['seg'].squeeze().to(self.data_type).detach().cpu().numpy() # (bs, 1, h, w)
pred_seg = self.do_eval_forward(img) # (bs, num_class, h, w)
pred_seg_numpy = torch.argmax(pred_seg, dim=1).detach().cpu().numpy() # (bs, h, w)
for i in range(img.size(0)):
self.metric.update(gt_seg_numpy[i], pred_seg_numpy[i])
self.meter.update(dice = self.metric.dice,
iou = self.metric.iou,
fnr = self.metric.fnr,
fpr = self.metric.fpr,
voe = self.metric.voe,
rvd = self.metric.rvd,
acc = self.metric.acc,
)
def test(self, cur_step, cur_epoch):
if cur_step % int(self.hyp.get('inference_every', 1.0)*len(self.traindataloader))== 0:
torch.cuda.empty_cache()
try:
all_reduce_norm(self.model) # 该函数只对batchnorm和instancenorm有效
except:
pass
if self.hyp['do_ema']:
eval_model = self.ema_model.ema
else:
eval_model = self.model
if is_parallel(eval_model):
eval_model = eval_model.module
with adjust_status(eval_model, training=False):
for j in range(len(self.testdataloader)):
if self.use_cuda:
y = self.testprefetcher.next()
else:
y = next(self.testdataloader)
img = y['img'].to(self.data_type) # (bs, 3, h, w)
info = y['info']
if self.hyp['use_tta_when_val']:
pred_seg = self.tta(img) # (bs, num_class, h, w)
else:
pred_seg = self.do_eval_forward(img) # (1, num_class, h, w)
img_numpy, pred_seg_numpy = self.postprocess(img.detach().cpu().numpy(), pred_seg.detach().cpu().numpy(), info)
for k in range(len(img)):
save_path = str(self.cwd / 'result' / f'predictions_rank_{self.rank}' / f"epoch{cur_epoch+1}_img_{j + k} {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}.png")
maybe_mkdir(Path(save_path).parent)
save_seg(img_numpy[k], pred_seg_numpy[k], save_path)
del y, img, info, img_numpy, pred_seg, pred_seg_numpy
synchronize()
gc.collect()
@staticmethod
def scale_img(img, scale_factor):
"""
Inputs:
img: (bn, 3, h, w)
scale_factor: 输出的img shape必须能被scale_factor整除
Outputs:
resized_img:
new_h: resized_img's height
new_w: resized_img's width
"""
h, w = img.shape[2], img.shape[3]
if scale_factor == 1.0:
return img, h, w
else:
new_h, new_w = int(scale_factor * h), int(scale_factor * w)
img = F.interpolate(img, size=(new_h, new_w), align_corners=False, mode='bilinear')
out_h, out_w = int(np.ceil(h / 32) * 32), int(np.ceil(w / 32) * 32)
pad_right, pad_down = out_w - new_w, out_h - new_h
pad = [0, pad_right, 0, pad_down] # [left, right, up, down]
return F.pad(img, pad, value=0.447), new_h, new_w
def tta(self, imgs):
"""
对传入的imgs和相应的targets进行缩放,从而达到输入的每个batch中image shape不同的目的
:param imgs: input image tensor from dataloader / tensor / (bn, 3, h, w)
:return:
"""
org_img_h, org_img_w = imgs.shape[2:]
scale_facotr = [1, 0.83, 0.67]
flip_axis = [None, 2, 3]
tta_preds = []
for s, f in zip(scale_facotr, flip_axis):
if f:
img_aug = imgs.flip(dims=(f,)).contiguous()
else:
img_aug = imgs
img_aug, h, w = self.scale_img(img_aug, s)
pred_segs = self.do_eval_forward(img_aug) # ndarray / (bs, num_class, h, w)
pred_segs = pred_segs[:, :, :h, :w]
if s != 1.0:
pred_segs = F.interpolate(pred_segs, size=(org_img_h, org_img_w), align_corners=False, mode='bilinear')
if f: # restore flip
pred_segs = pred_segs.flip(dims=(f,)).contiguous()
# [(bs, num_class, h, w), (bs, num_class, h, w), (bs, num_class, h, w)]
tta_preds.append(pred_segs)
pred_segs_out = tta_preds[0] * (1 / len(tta_preds))
for i in range(1, len(tta_preds)):
pred_segs_out += tta_preds[i] * (1 / len(tta_preds))
return pred_segs_out # (bs, num_class, h, w)
def main(x):
configure_module()
from utils import print_config
config_ = Config()
class Args:
def __init__(self) -> None:
self.cfg = "./config/train_dist.yaml"
args = Args()
hyp = config_.get_config(args.cfg, args)
formated_config = print_config(hyp)
print(formated_config)
train = Training(hyp)
train.step()
if __name__ == '__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument('--cfg', type=str, required=True, dest='cfg', help='path to config file')
# parser.add_argument('--pretrained_model_path',default="", dest='pretrained_model_path')
# parser.add_argument('--batch_size', type=int, default=2, dest='batch_size')
# parser.add_argument("--input_img_size", default=640, type=int, dest='input_img_size')
# parser.add_argument('--train_img_dir', required=True, dest='train_img_dir', type=str)
# parser.add_argument('--train_seg_dir', required=True, dest='train_lab_dir', type=str)
# parser.add_argument('--val_img_dir', required=True, dest='val_img_dir', type=str)
# parser.add_argument('--val_seg_dir', required=True, dest='val_lab_dir', type=str)
# parser.add_argument('--test_img_dir', required=True, dest='test_img_dir', type=str)
# parser.add_argument('--model_save_dir', default="", type=str, dest='model_save_dir')
# parser.add_argument('--log_save_path', default="", type=str, dest="log_save_path")
# parser.add_argument('--aspect_ratio_path', default=None, dest='aspect_ratio_path', type=str, help="aspect ratio list for dataloader sampler, only support serialization object by pickle")
# parser.add_argument('--cache_num', default=0, dest='cache_num', type=int)
# parser.add_argument('--total_epoch', default=300, dest='total_epoch', type=int)
# parser.add_argument('--do_warmup', default=True, type=bool, dest='do_warmup')
# parser.add_argument('--use_tta', default=True, type=bool, dest='use_tta')
# parser.add_argument('--optimizer', default='sgd', type=str, choices=['sgd', 'adam'], dest='optimizer')
# parser.add_argument('--init_lr', default=0.01, type=float, dest='init_lr', help='initialization learning rate')
# args = parser.parse_args()
from utils import launch, get_num_devices
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
num_gpu = get_num_devices()
# clear_dir(str(current_work_directionary / 'log'))
launch(
main,
num_gpus_per_machine= num_gpu,
num_machines= 1,
machine_rank= 0,
backend= "nccl",
dist_url= "auto",
args=(None,),
)