forked from ycrc/Python-Bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analysis.py
88 lines (60 loc) · 1.97 KB
/
data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
# Create 2X3 double precision array initialized to all zeroes
a = np.zeros((2,3), dtype=np.float64)
# Create array initialized by list of lists
a = np.array([[0,1,2],[3,4,5]], dtype=np.float64)
# Create array using "arange" function
a = np.arange(6, dtype=np.float64).reshape(2,3)
# Print single element of 2D array
print a[0,0] # a scalar, not an array
# Print first row of 2D array
print a[0,:] # 1D array
# Print last column of array
print a[:,-1] # 1D array
# Print sub-matrix of 2D array
print a[0:2,1:3] # 2D array
# Assign single value to single element of 2D array
a[0,0] = 25.0
# Assign 1D array to first row of 2D array
a[0,:] = np.array([10,11,12], dtype=np.float64)
# Assign 1D array to last column of 2D array
a[:,-1] = np.array([20,21], dtype=np.float64)
# Assign 2D array to sub-matrix of 2D array
a[0:2,1:3] = np.array([[10,11],[20,21]], dtype=np.float64)
# Assign scalar to first row of 2D array
a[0,:] = 10.0
# Assign 1D array to all rows of 2D array
a[:,:] = np.array([30,31,32], dtype=np.float64)
# Assign 1D array to all columns of 2D array
a[:,:] = np.array([40,41], dtype=np.float64).reshape(2,1)
# Assign scalar to sub-matrix of 2D array
a[0:2,1:3] = 100.0
# Create 1D array
a = np.arange(4, dtype=np.float64)
# Add 1D arrays elementwise
a + a
# Multiply 1D arrays elementwise
a * a
# Sum elements of 1D array
a.sum()
# Compute dot product
np.dot(a, a) # same as: (a * a).sum()
# Compute cross product
np.dot(a.reshape(4,1), a.reshape(1,4))
from scipy import linalg
a = np.array([[1, 2], [3, 4]], dtype=np.float64)
# Compute the inverse matrix
linalg.inv(a)
# Compute singular value decomposition
linalg.svd(a)
# Compute eigenvalues
linalg.eigvals(a)
import matplotlib.pyplot as plt
x = np.linspace(0.0, 2.0, 20)
plt.plot(x, np.sqrt(x), 'ro') # red circles
plt.show()
plt.plot(x, np.sqrt(x), 'b-') # blue lines
plt.show()
# Three plots in one figure
plt.plot(x, x, 'g--', x, np.sqrt(x), 'ro', x, np.sqrt(x), 'b-')
plt.show()