Official PyTorch Implementation
Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt
🔥 Check out our previous paper on interpreting attention heads in CLIP with text.
We provide an environment.yml
file that can be used to create a Conda environment:
conda env create -f environment.yml
conda activate prsclip
To pre-compute the representations and the labels for the subsampled ImageNet data, execute:
datapath='...'
outputdir='...'
python compute_representations.py --model ViT-B-32 --pretrained openai --data_path $datapath --output_dir $outputdir # for representations and classes
python compute_classifier_projection.py --model ViT-B-32 --pretrained openai --output_dir $outputdir # for classifier weights
# Get second order for neurons in layer 9:
python compute_second_order_neuron_prs.py --model ViT-B-32 --pretrained openai --mlp_layer 9 --output_dir $outputdir --data_path $datapath # second order effect
To obtain the first PC that approximates most of the behavior of a single neuron, execute:
outputdir='...'
inputdir='...' # Set it to be the output of the previous stage
python compute_pcas.py --model ViT-B-32 --pretrained openai --mlp_layer 9 --output_dir $outputdir --input_dir $inputdir
To repeat our empirical analysis of the second-order effects, execute:
python compute_ablations.py --model ViT-B-32 --pretrained openai --mlp_layer 9 --output_dir $outputdir --input_dir $inputdir --data_path $datapath
To decompose the neuron second-order effects into text, execute:
python compute_text_set_projection.py --model ViT-B-32 --pretrained openai --output_dir $outputdir --data_path text_descriptions/30k.txt # get the text representations
# run the decomposition:
python compute_sparse_decomposition.py --model ViT-B-32 --pretrained openai --output_dir $outputdir --mlp_layer 9 --components 128 --text_descriptions 30k --device cuda:0
To verify the reconstruction quality, add the --evaluate
flag.
Please see a demo for visualizing the images with the largest second-order effects per neuron in visualize_neurons.ipynb
.
To get adversarial images, please run:
CUDA_VISIBLE_DEVICES=0 python generate_adversarial_images.py --device cuda:0 --class_0 "vacuum cleaner" --class_1 "cat" --model ViT-B-32 --pretrained openai --dataset_path $outputdir --text_descriptions 30k --mlp_layers 9 --neurons_num 100 --overall_words 50 --results_per_generation 1
Note that we used other hyperparameters in the paper, including --mlp_layers 8 9 10
.
Please download the dataset from here:
mkdir imagenet_seg
cd imagenet_seg
wget http://calvin-vision.net/bigstuff/proj-imagenet/data/gtsegs_ijcv.mat
To get the evaluation results, please run:
CUDA_VISIBLE_DEVICES=0 python generate_adversarial_images.py --device cuda:0 --class_0 "stop sign" --class_1 "yield" --model ViT-B-32 --pretrained openai --dataset_path $outputdir --text_descriptions 30k --mlp_layers 9 --neurons_num 100 --overall_words 50 --results_per_generation 4
Note that we used other hyperparameters in the paper, including --mlp_layers 8 9 10
.
Please see a demo for image concept discovery in concept_discovery.ipynb
.
@misc{gandelsman2024interpretingsecondordereffectsneurons,
title={Interpreting the Second-Order Effects of Neurons in CLIP},
author={Yossi Gandelsman and Alexei A. Efros and Jacob Steinhardt},
year={2024},
eprint={2406.04341},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.04341},
}