Unofficial PyTorch Implementation of Data-Distortion Guided Self-Distillation for Deep Neural Networks (AAAI 2019)
src/
└─ model/
└─ net.py
├─ config.py
├─ dataset.py
├─ main.py
├─ trainer.py
└─ utils.py
scripts/
├─ run_baseline.sh
└─ run_ddgsd.sh
├─ .gitignore
├─ Dockerfile
├─ LICENSE
├─ README.md
└─ requirements.txt
- torch==1.6.0
- torchvision==0.7.0
All dependencies are written in requirements.txt, and you can also access through Dockerfile.
$ sh scripts/run_baseline.sh
$ sh scripts/run_ddgsd.sh
Dataset | Model | Top-1 Error | Top-5 Error | Method |
---|---|---|---|---|
CIFAR-100 | ResNet18 | 30.15% | 9.58% | Baseline |
CIFAR-100 | ResNet18 | 26.60% | 8.36% | DDGSD |
* Hyperparameters of this implementation follow paper settings.
* MMD Loss is replaced with MSE Loss in this implementation.
* For another differences, check this issue.