-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_rtf.py
257 lines (213 loc) · 7.99 KB
/
test_rtf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import argparse
import pathlib
import torchaudio
import numpy as np
import yaml
from typing import List, Callable, Any
from importlib import import_module
from itertools import starmap, accumulate
import time
# from frechet_audio_distance import FrechetAudioDistance
from ltng.vocoder import DDSPVocoder
from ltng.ae import VoiceAutoEncoder
from models.audiotensor import AudioTensor
def get_instance(config):
module_path, class_name = config["class_path"].rsplit(".", 1)
module = import_module(module_path)
return getattr(module, class_name)(**config.get("init_args", {}))
def dict2object(config: dict):
for k in config.keys():
v = config[k]
if isinstance(v, dict):
config[k] = dict2object(v)
if "class_path" in config:
return get_instance(config)
return config
def load_ismir_ckpt(model_configs, ckpt_path, device):
model_configs["feature_trsfm"]["init_args"]["sample_rate"] = model_configs[
"sample_rate"
]
model_configs["feature_trsfm"]["init_args"]["window"] = model_configs["window"]
model_configs["feature_trsfm"]["init_args"]["hop_length"] = model_configs[
"hop_length"
]
def contains(d: dict, s: str) -> bool:
for k in d.keys():
if s in k:
return True
if isinstance(d[k], dict):
if contains(d[k], s):
return True
elif isinstance(d[k], str):
if s in d[k]:
return True
return False
if contains(model_configs, "DownsampledIndexedGlottalFlowTable"):
# GOLF
swap_weights = lambda voice_lpc, voice_gain, noise_lpc, noise_gain, h: (
h,
voice_gain,
voice_lpc,
noise_gain,
noise_lpc,
)
lpc_order = model_configs["decoder"]["init_args"]["harm_filter"]["init_args"][
"lpc_order"
]
h_size = model_configs["decoder"]["init_args"]["harm_oscillator"]["init_args"][
"in_channels"
]
old_split_sizes = [lpc_order, 1, lpc_order, 1, h_size]
elif contains(model_configs, "AdditivePulseTrain") and contains(
model_configs, "LTVMinimumPhaseFilter"
):
# PULF
swap_weights = lambda voice_lpc, voice_gain, noise_lpc, noise_gain: (
voice_gain,
voice_lpc,
noise_gain,
noise_lpc,
)
harm_lpc_order = model_configs["decoder"]["init_args"]["harm_filter"][
"init_args"
]["lpc_order"]
noise_lpc_order = model_configs["decoder"]["init_args"]["noise_filter"][
"init_args"
]["lpc_order"]
old_split_sizes = [harm_lpc_order, 1, noise_lpc_order, 1]
else:
swap_weights = old_split_sizes = None
model_configs = dict2object(model_configs)
model = DDSPVocoder(**model_configs).to(device)
ckpt = torch.load(ckpt_path, map_location=device)
# remove "_kernel" from key
state_dict = {
k: v for k, v in ckpt["state_dict"].items() if not k.endswith("_kernel")
}
state_dict = {
k.replace("amplicudes", "amplitudes"): v for k, v in state_dict.items()
}
if old_split_sizes is not None:
size_sum = sum(old_split_sizes)
state_dict = {
k: (
torch.cat(
[
v[:-size_sum],
torch.cat(
list(
swap_weights(
*torch.split(v[-size_sum:], old_split_sizes, dim=0)
)
),
dim=0,
),
],
dim=0,
)
if "out_linear" in k
else v
)
for k, v in state_dict.items()
}
model.load_state_dict(state_dict)
ckpt["state_dict"] = state_dict
return model, ckpt
def ismir_rtf(model_configs, ckpt_path, device, x, test_duration, num):
# model = load_ismir_ckpt(model_configs, ckpt_path, device)
model_configs["feature_trsfm"]["init_args"]["sample_rate"] = model_configs[
"sample_rate"
]
model_configs["feature_trsfm"]["init_args"]["window"] = model_configs["window"]
model_configs["feature_trsfm"]["init_args"]["hop_length"] = model_configs[
"hop_length"
]
model_configs = dict2object(model_configs)
model = DDSPVocoder(**model_configs).to(device)
ckpt = torch.load(ckpt_path, map_location=device)
model.load_state_dict(ckpt["state_dict"])
model.eval()
# get mel
mel = model.feature_trsfm(x)
runner = lambda: model(mel)
measurements, _ = bench(runner, num)
avg_synthesis_time = np.mean(measurements)
print(f"Average synthesis time: {avg_synthesis_time:.3f}")
print(f"Real time factor: {avg_synthesis_time / test_duration:.3f}")
def bench(runner: Callable[[], Any], num):
results = accumulate(
range(num),
lambda *_: (time.time(), runner()),
initial=(time.time(), None),
)
time_stamps, runner_results = zip(*results)
time_diff = starmap(lambda x, y: y - x, zip(time_stamps, time_stamps[1:]))
measurements = sorted(time_diff)[1:-1]
return measurements, runner_results[-1]
@torch.no_grad()
def main():
parser = argparse.ArgumentParser(
"Test model Real time factor with a given wave file"
)
parser.add_argument("config", type=str, help="Path to config file")
parser.add_argument("ckpt", type=str, help="Path to checkpoint file")
parser.add_argument("wav", type=str, help="Path to wav file")
parser.add_argument("-n", "--num", type=int, default=10, help="Number of test run")
parser.add_argument(
"--duration", type=float, default=6.0, help="Duration of samples"
)
parser.add_argument("--cuda", action="store_true", help="Use cuda")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
# load wav
x, sr = torchaudio.load(args.wav)
x = x[:, : int(sr * args.duration)].to(device)
test_duration = x.shape[1] / sr
print(f"Test duration: {test_duration:.3f}")
x = AudioTensor(x)
with open(args.config) as f:
config = yaml.safe_load(f)
model_configs = config["model"]
if "init_args" in model_configs.keys():
model_configs = model_configs["init_args"]
assert sr == model_configs["sample_rate"]
if "feature_trsfm" in model_configs.keys():
ismir_rtf(model_configs, args.ckpt, device, x, test_duration, args.num)
return
model_configs = dict2object(model_configs)
model = VoiceAutoEncoder.load_from_checkpoint(
args.ckpt, map_location=device, **model_configs
)
model.eval()
f0_hop_num_frames = sr // 200
num_f0 = x.shape[1] // f0_hop_num_frames + 1
f0_in_hz = AudioTensor(
torch.full((1, num_f0), 150.0, device=device), f0_hop_num_frames
)
def analysis():
params = model.encoder(x, f0=f0_in_hz if model.train_with_true_f0 else None)
f0_hat = params.pop("f0", None)
if f0_hat is not None:
phase = f0_hat / sr
else:
phase = f0_in_hz / sr
params["phase"] = phase
return params
measurements, params = bench(analysis, args.num)
avg_analysis_time = np.mean(measurements)
print(f"Average analysis time: {avg_analysis_time:.3f}")
print(f"Real time factor: {avg_analysis_time / test_duration:.3f}")
def synthesis():
y = model.decoder(**params)
return y
measurements, _ = bench(synthesis, args.num)
avg_synthesis_time = np.mean(measurements)
print(f"Average synthesis time: {avg_synthesis_time:.3f}")
print(f"Real time factor: {avg_synthesis_time / test_duration:.3f}")
print(f"Total time: {avg_analysis_time + avg_synthesis_time:.3f}")
print(
f"Total real time factor: {(avg_analysis_time + avg_synthesis_time) / test_duration:.2f}"
)
if __name__ == "__main__":
main()