diff --git a/yt/frontends/cholla/data_structures.py b/yt/frontends/cholla/data_structures.py index 70c7cdcc14e..6681bedfa33 100644 --- a/yt/frontends/cholla/data_structures.py +++ b/yt/frontends/cholla/data_structures.py @@ -5,7 +5,7 @@ from yt.data_objects.index_subobjects.grid_patch import AMRGridPatch from yt.data_objects.static_output import Dataset -from yt.funcs import setdefaultattr +from yt.funcs import get_pbar, setdefaultattr from yt.geometry.api import Geometry from yt.geometry.grid_geometry_handler import GridIndex from yt.utilities.on_demand_imports import _h5py as h5py @@ -13,11 +13,42 @@ from .fields import ChollaFieldInfo +def _split_fname_proc_suffix(filename: str): + """Splits ``filename`` at the '.' separating the beginning part of the + string from the process-id suffix, and returns both parts in a 2-tuple. + + When cholla is compiled with MPI and it directly writes data-files, each + process appends a suffix to each filename that denotes the process-id. For + example, the MPI-compiled version might write '0.h5.0'. If that function is + passed such a string, then it returns ``('0.h5', '0')``. + + In cases where there is no suffix, the output is ``(filename, '')``. This + might come up if the user concatenated the output files, which is common + practice. + """ + + # at this time, we expect the suffix to be the minimum number of characters + # that are necessary to represent the process id. For flexibility, we will + # allow extra zero-padding + + sep_i = filename.rfind(".") + suf_len = len(filename) - (sep_i + 1) + if (sep_i == -1) or (suf_len == 0) or not filename[sep_i + 1 :].isdecimal(): + return (filename, "") + elif (sep_i == 0) or ((sep_i - 1) == filename.rfind("/")): + raise ValueError( + f"can't split a process-suffix off of {filename!r} " + "since the remaining filename would be empty" + ) + else: + return (filename[:sep_i], filename[sep_i + 1 :]) + + class ChollaGrid(AMRGridPatch): _id_offset = 0 - def __init__(self, id, index, level, dims): - super().__init__(id, filename=index.index_filename, index=index) + def __init__(self, id, index, level, dims, filename): + super().__init__(id, filename=filename, index=index) self.Parent = None self.Children = [] self.Level = level @@ -42,23 +73,92 @@ def _detect_output_fields(self): self.field_list = [("cholla", k) for k in h5f.keys()] def _count_grids(self): - self.num_grids = 1 + # the number of grids is equal to the number of processes, unless the + # dataset has been concatenated. But, when the dataset is concatenated + # (a common post-processing step), the "nprocs" hdf5 attribute is + # usually dropped. + + with h5py.File(self.index_filename, mode="r") as h5f: + nprocs = h5f.attrs.get("nprocs", np.array([1, 1, 1]))[:].astype("=i8") + self.num_grids = np.prod(nprocs) + + if self.num_grids > 1: + # When there's more than 1 grid, we expect the user to + # - have not changed the names of the output files + # - have passed the file written by process 0 to ``yt.load`` + # Let's perform a sanity-check that self.index_filename has the + # expected suffix for a file written by mpi-process 0 + if int(_split_fname_proc_suffix(self.index_filename)[1]) != 0: + raise ValueError( + "the primary file associated with a " + "distributed cholla dataset must end in '.0'" + ) def _parse_index(self): - self.grid_left_edge[0][:] = self.ds.domain_left_edge[:] - self.grid_right_edge[0][:] = self.ds.domain_right_edge[:] - self.grid_dimensions[0][:] = self.ds.domain_dimensions[:] - self.grid_particle_count[0][0] = 0 - self.grid_levels[0][0] = 0 + self.grids = np.empty(self.num_grids, dtype="object") + + # construct an iterable over the pairs of grid-index and corresponding + # filename + if self.num_grids == 1: + ind_fname_pairs = [(0, self.index_filename)] + else: + # index_fname should has the form f'{self.directory}/.0' + # strip off the '.0' and determine the contents of + pref, suf = _split_fname_proc_suffix(self.index_filename) + assert int(suf) == 0 # sanity check! + + ind_fname_pairs = ((i, f"{pref}.{i}") for i in range(self.num_grids)) + + dims_global = self.ds.domain_dimensions[:] + pbar = get_pbar("Parsing Hierarchy", self.num_grids) + + # It would be nice if we could avoid reading in every hdf5 file during + # this step... (to do this, Cholla could probably encode how the blocks + # are sorted in an hdf5 attribute) + + for i, fname in ind_fname_pairs: + if self.num_grids == 1: + # if the file was concatenated, we might be missing attributes + # that are accessed in the other branch. To avoid issues, we use + # hardcoded values + left_frac, right_frac, dims_local = 0.0, 1.0, dims_global + else: + with h5py.File(fname, "r") as f: + offset = f.attrs["offset"][:].astype("=i8") + dims_local = f.attrs["dims_local"][:].astype("=i8") + left_frac = offset / dims_global + right_frac = (offset + dims_local) / dims_global + + level = 0 + + self.grids[i] = self.grid( + i, + index=self, + level=level, + dims=dims_local, + filename=fname, + ) + + self.grid_left_edge[i] = left_frac + self.grid_right_edge[i] = right_frac + self.grid_dimensions[i] = dims_local + self.grid_levels[i, 0] = level + self.grid_particle_count[i, 0] = 0 + + pbar.update(i + 1) + pbar.finish() + + slope = self.ds.domain_width / self.ds.arr(np.ones(3), "code_length") + self.grid_left_edge = self.grid_left_edge * slope + self.ds.domain_left_edge + self.grid_right_edge = self.grid_right_edge * slope + self.ds.domain_left_edge + self.max_level = 0 def _populate_grid_objects(self): - self.grids = np.empty(self.num_grids, dtype="object") for i in range(self.num_grids): - g = self.grid(i, self, self.grid_levels.flat[i], self.grid_dimensions[i]) + g = self.grids[i] g._prepare_grid() g._setup_dx() - self.grids[i] = g class ChollaDataset(Dataset): @@ -103,9 +203,11 @@ def _parse_parameter_file(self): attrs = h5f.attrs self.parameters = dict(attrs.items()) self.domain_left_edge = attrs["bounds"][:].astype("=f8") - self.domain_right_edge = attrs["domain"][:].astype("=f8") + self.domain_right_edge = self.domain_left_edge + attrs["domain"][:].astype( + "=f8" + ) self.dimensionality = len(attrs["dims"][:]) - self.domain_dimensions = attrs["dims"][:].astype("=f8") + self.domain_dimensions = attrs["dims"][:].astype("=i8") self.current_time = attrs["t"][:] self._periodicity = tuple(attrs.get("periodicity", (False, False, False))) self.gamma = attrs.get("gamma", 5.0 / 3.0) diff --git a/yt/frontends/cholla/io.py b/yt/frontends/cholla/io.py index 0d216864076..023912d8074 100644 --- a/yt/frontends/cholla/io.py +++ b/yt/frontends/cholla/io.py @@ -1,4 +1,3 @@ -import numpy as np from yt.utilities.io_handler import BaseIOHandler from yt.utilities.on_demand_imports import _h5py as h5py @@ -14,22 +13,24 @@ def _read_particle_coords(self, chunks, ptf): def _read_particle_fields(self, chunks, ptf, selector): raise NotImplementedError - def _read_fluid_selection(self, chunks, selector, fields, size): - data = {} - for field in fields: - data[field] = np.empty(size, dtype="float64") - - with h5py.File(self.ds.parameter_filename, "r") as fh: - ind = 0 - for chunk in chunks: - for grid in chunk.objs: - nd = 0 - for field in fields: - ftype, fname = field - values = fh[fname][:].astype("=f8") - nd = grid.select(selector, values, data[field], ind) - ind += nd - return data + def io_iter(self, chunks, fields): + # this is loosely inspired by the implementation used for Enzo/Enzo-E + # - those other options use the lower-level hdf5 interface. Unclear + # whether that affords any advantages... + fh, filename = None, None + for chunk in chunks: + for obj in chunk.objs: + if obj.filename is None: # unclear when this case arises... + continue + elif obj.filename != filename: + if fh is not None: + fh.close() + fh, filename = h5py.File(obj.filename, "r"), obj.filename + for field in fields: + ftype, fname = field + yield field, obj, fh[fname][:].astype("=f8") + if fh is not None: + fh.close() def _read_chunk_data(self, chunk, fields): raise NotImplementedError