-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathfolder_data_provider.py
executable file
·57 lines (51 loc) · 1.75 KB
/
folder_data_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import os
import cv2
import random
from util import get_image_center
from data_provider import DataProvider
class FolderDataProvider(DataProvider):
def __init__(self,
folder,
read_limit=-1,
main_size=80,
crop_size=64,
augmentation_factor=4,
*args,
**kwargs):
files = os.listdir(folder)
files = sorted(files)
if read_limit != -1:
files = files[:read_limit]
data = []
files.sort()
for f in files:
image = (cv2.imread(os.path.join(folder, f))[:, :, ::-1] /
255.0).astype(np.float32)
image = get_image_center(image)
# image = cv2.resize(image, (64, 64), interpolation=cv2.INTER_AREA)
# data.append(image)
image = cv2.resize(
image, (main_size, main_size), interpolation=cv2.INTER_AREA)
for i in range(augmentation_factor):
new_image = image
if random.random() < 0.5:
new_image = new_image[:, ::-1, :]
sx, sy = random.randrange(main_size - crop_size + 1), random.randrange(
main_size - crop_size + 1)
data.append(new_image[sx:sx + crop_size, sy:sy + crop_size])
data = np.stack(data, axis=0)
print("# image after augmentation =", len(data))
super(FolderDataProvider, self).__init__(data, *args, bnw=False,
augmentation=1.0,
output_size=crop_size,
**kwargs)
def test():
dp = FolderDataProvider('data/sintel/outputs')
while True:
d = dp.get_next_batch(64)
cv2.imshow('img', d[0][0, :, :, ::-1])
cv2.waitKey(0)
if __name__ == '__main__':
test()
# preprocess()