-
Notifications
You must be signed in to change notification settings - Fork 19
/
p2t.py
397 lines (293 loc) · 14.6 KB
/
p2t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from os import sep
from pickle import TRUE
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import numpy as np
__all__ = [
'p2t_tiny', 'p2t_small', 'p2t_base', 'p2t_large'
]
class IRB(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, ksize=3, act_layer=nn.Hardswish, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0)
self.act = act_layer()
self.conv = nn.Conv2d(hidden_features, hidden_features, kernel_size=ksize, padding=ksize//2, stride=1, groups=hidden_features)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0,2,1).reshape(B, C, H, W)
x = self.fc1(x)
x = self.act(x)
x = self.conv(x)
x = self.act(x)
x = self.fc2(x)
return x.reshape(B, C, -1).permute(0,2,1)
class PoolingAttention(nn.Module):
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
pool_ratios=[1,2,3,6]):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
self.num_elements = np.array([t*t for t in pool_ratios]).sum()
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Sequential(nn.Linear(dim, dim, bias=qkv_bias))
self.kv = nn.Sequential(nn.Linear(dim, dim * 2, bias=qkv_bias))
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.pool_ratios = pool_ratios
self.pools = nn.ModuleList()
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W, d_convs=None):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
pools = []
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
for (pool_ratio, l) in zip(self.pool_ratios, d_convs):
pool = F.adaptive_avg_pool2d(x_, (round(H/pool_ratio), round(W/pool_ratio)))
pool = pool + l(pool) # fix backward bug in higher torch versions when training
pools.append(pool.view(B, C, -1))
pools = torch.cat(pools, dim=2)
pools = self.norm(pools.permute(0,2,1))
kv = self.kv(pools).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v)
x = x.transpose(1,2).contiguous().reshape(B, N, C)
x = self.proj(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_ratios=[12,16,20,24]):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = PoolingAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, pool_ratios=pool_ratios)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = IRB(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.Hardswish, drop=drop, ksize=3)
def forward(self, x, H, W, d_convs=None):
x = x + self.drop_path(self.attn(self.norm1(x), H, W, d_convs=d_convs))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class PatchEmbed(nn.Module):
""" (Overlapped) Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, kernel_size=3, in_chans=3, embed_dim=768, overlap=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
if not overlap:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=kernel_size//2)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, (H, W)
class PyramidPoolingTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 9, 3], **kwargs): #
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
# pyramid pooling ratios for each stage
pool_ratios = [[12,16,20,24], [6,8,10,12], [3,4,5,6], [1,2,3,4]]
self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=4, kernel_size=7, in_chans=in_chans,
embed_dim=embed_dims[0], overlap=True)
self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1], overlap=True)
self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2], overlap=True)
self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3], overlap=True)
self.d_convs1 = nn.ModuleList([nn.Conv2d(embed_dims[0], embed_dims[0], kernel_size=3, stride=1, padding=1, groups=embed_dims[0]) for temp in pool_ratios[0]])
self.d_convs2 = nn.ModuleList([nn.Conv2d(embed_dims[1], embed_dims[1], kernel_size=3, stride=1, padding=1, groups=embed_dims[1]) for temp in pool_ratios[1]])
self.d_convs3 = nn.ModuleList([nn.Conv2d(embed_dims[2], embed_dims[2], kernel_size=3, stride=1, padding=1, groups=embed_dims[2]) for temp in pool_ratios[2]])
self.d_convs4 = nn.ModuleList([nn.Conv2d(embed_dims[3], embed_dims[3], kernel_size=3, stride=1, padding=1, groups=embed_dims[3]) for temp in pool_ratios[3]])
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
ksize = 3
self.block1 = nn.ModuleList([Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[0])
for i in range(depths[0])])
cur += depths[0]
self.block2 = nn.ModuleList([Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[1])
for i in range(depths[1])])
cur += depths[1]
self.block3 = nn.ModuleList([Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[2])
for i in range(depths[2])])
cur += depths[2]
self.block4 = nn.ModuleList([Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[3])
for i in range(depths[3])])
# classification head
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.gap = nn.AdaptiveAvgPool1d(1)
self.apply(self._init_weights)
#print(self)
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
# return {'pos_embed', 'cls_token'} # has pos_embed may be better
return {'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# stage 3
x, (H, W) = self.patch_embed3(x)
for idx, blk in enumerate(self.block3):
x = blk(x, H, W, self.d_convs3)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# stage 4
x, (H, W) = self.patch_embed4(x)
for idx, blk in enumerate(self.block4):
x = blk(x, H, W, self.d_convs4)
return x
def forward_features_for_fpn(self, x):
outs = []
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
x, (H, W) = self.patch_embed3(x)
for idx, blk in enumerate(self.block3):
x = blk(x, H, W, self.d_convs3)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 4
x, (H, W) = self.patch_embed4(x)
for idx, blk in enumerate(self.block4):
x = blk(x, H, W, self.d_convs4)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
x = torch.mean(x, dim=1)
x = self.head(x)
return x
def forward_for_fpn(self, x):
return self.forward_features_for_fpn(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@register_model
def p2t_tiny(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[48, 96, 240, 384], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 6, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_small(pretrained=True, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3], **kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_base(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_medium(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 384, 512], num_heads=[1, 2, 6, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 15, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_large(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 640], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3],
**kwargs)
model.default_cfg = _cfg()
return model