Implementation of LinkNet by chainer
Feature Forwarding: Exploiting Encoder Representations for Efficient Semantic Segmentation link
######## Training by cityscapes ########
# Calculate class balancing
python calculate_class_weight.py [mean or loss] --base_dir data_dir --result name --source ./pretrained_model/data.txt --num_classes 19 --dataset [cityscapes or camvid]
# Training encoder by cityscapes
python train.py experiments/enc_dec_paper.yml
######## Evaluate by cityscapes ########
python test.py experiments/test.yml
######## Visualize by cityscapes ########
python demo.py experiments/test.yml --img_path img.png
- Spatial Dropout using cupy
- Baseline, model architecture
- Evaluate by citydataset
- Calculate class weights for training model
- Poly leraning rate policy
- Python3
- Chainer3
- Cupy
- Chainercv
- OpenCV
- Load pretrained model of resnet18 (if necessary)