Skip to content

yukitsuji/LinkNet_chainer

Repository files navigation

LinkNet_chainer

Implementation of LinkNet by chainer
Feature Forwarding: Exploiting Encoder Representations for Efficient Semantic Segmentation link

######## Training by cityscapes ########
# Calculate class balancing
python calculate_class_weight.py [mean or loss] --base_dir data_dir --result name --source ./pretrained_model/data.txt --num_classes 19 --dataset [cityscapes or camvid]
# Training encoder by cityscapes
python train.py experiments/enc_dec_paper.yml

######## Evaluate by cityscapes ########
python test.py experiments/test.yml

######## Visualize by cityscapes ########
python demo.py experiments/test.yml --img_path img.png

Implementation

  • Spatial Dropout using cupy
  • Baseline, model architecture
  • Evaluate by citydataset
  • Calculate class weights for training model
  • Poly leraning rate policy

Requirement

  • Python3
  • Chainer3
  • Cupy
  • Chainercv
  • OpenCV

TODO

  • Load pretrained model of resnet18 (if necessary)

Releases

No releases published

Packages

No packages published