Skip to content

๐Ÿค— An implementation of SWEM(Simple Word-Embedding-based Models) using Python.

License

Notifications You must be signed in to change notification settings

yutayamazaki/swem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

SWEM

GitHub Actions PyPI Version MIT License GitHub Starts GitHub Forks

Implementation of SWEM(Simple Word-Embedding-based Models)
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms (ACL 2018)

Installation

pip install swem

Example

Examples are available in examples directory.

Functional API

from typing import List

import numpy as np
import swem
from gensim.models import KeyedVectors

if __name__ == '__main__':
    kv: KeyedVectors = KeyedVectors(vector_size=200)
    tokens: List[str] = ['I', 'have', 'a', 'pen']

    embed: np.ndarray = swem.infer_vector(
        tokens=tokens, kv=kv, method='concat'
    )
    print(embed.shape)

Japanese

from typing import List

import swem
from gensim.models import KeyedVectors


if __name__ == '__main__':
    kv: KeyedVectors = KeyedVectors(vector_size=200)
    swem_embed = swem.SWEM(kv)

    tokens: List[str] = ['ใ™ใ‚‚ใ‚‚', 'ใ‚‚', 'ใ‚‚ใ‚‚', 'ใ‚‚', 'ใ‚‚ใ‚‚', 'ใฎ', 'ใ†ใก']
    embed = swem_embed.infer_vector(tokens, method='max')
    print(embed.shape)

Results

(200,)

English

from typing import List

import swem
from gensim.models import KeyedVectors


if __name__ == '__main__':
    kv: KeyedVectors = KeyedVectors(vector_size=200)
    swem_embed = swem.SWEM(kv)

    tokens: List[str] = ['This', 'is', 'an', 'implementation', 'of', 'SWEM']
    embed = swem_embed.infer_vector(tokens, method='max')
    print(embed.shape)

Results

(200,)

Set random seed

SWEM generates random vector when given token is out of vocaburary. To reproduce token's embeddings, you need to set seed of NumPy.

from typing import List

import numpy as np
import swem
from gensim.models import KeyedVectors

if __name__ == '__main__':
    np.random.seed(0)
    kv: KeyedVectors = KeyedVectors(vector_size=200)
    tokens: List[str] = ['I', 'have', 'a', 'pen']

    embed: np.ndarray = swem.infer_vector(
        tokens=tokens, kv=kv, method='concat'
    )
    print(embed.shape)

Download pretained w2v and use it.

import swem
swem.download_w2v(lang='ja')
kv = swem.load_w2v(lang='ja')
Downloading w2v file to /Users/<username>/.swem/ja.zip
Extract zipfile into /Users/<username>/.swem/ja
Success to extract files.

About

๐Ÿค— An implementation of SWEM(Simple Word-Embedding-based Models) using Python.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages