This repository has been archived by the owner on Mar 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtrain.py
133 lines (111 loc) · 4.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
import os
import time
from absl import app, flags
from tensorflow.keras import optimizers
from core.utils import decode_cfg, load_weights
from core.dataset import Dataset
from core.callbacks import COCOEvalCheckpoint, CosineAnnealingScheduler, WarmUpScheduler
from core.utils.optimizers import Accumulative
flags.DEFINE_string('config', '', 'path to config file')
FLAGS = flags.FLAGS
def main(_argv):
print('Config File From:', FLAGS.config)
cfg = decode_cfg(FLAGS.config)
model_type = cfg['yolo']['type']
if model_type == 'yolov3':
from core.model.one_stage.yolov3 import YOLOv3 as Model
from core.model.one_stage.yolov3 import YOLOLoss as Loss
num = 186
epochs = 200
elif model_type == 'yolov3_tiny':
from core.model.one_stage.yolov3 import YOLOv3_Tiny as Model
from core.model.one_stage.yolov3 import YOLOLoss as Loss
num = 29
epochs = 80
elif model_type == 'yolov4':
from core.model.one_stage.yolov4 import YOLOv4 as Model
from core.model.one_stage.yolov4 import YOLOLoss as Loss
num = 251
epochs = 200
elif model_type == 'yolov4_tiny':
from core.model.one_stage.yolov4 import YOLOv4_Tiny as Model
from core.model.one_stage.yolov4 import YOLOLoss as Loss
num = 61
epochs = 80
elif model_type == 'yolox':
from core.model.one_stage.custom import YOLOX as Model
from core.model.one_stage.custom import YOLOLoss as Loss
num = 61
epochs = 80
elif model_type == 'unofficial_yolov4_tiny':
from core.model.one_stage.custom import Unofficial_YOLOv4_Tiny as Model
from core.model.one_stage.custom import YOLOLoss as Loss
num = 29
epochs = 80
else:
raise NotImplementedError()
epoch_steps = 4000
model, eval_model = Model(cfg)
model.summary()
train_dataset = Dataset(cfg)
init_weight = cfg["train"]["init_weight_path"]
anchors = cfg['yolo']['anchors']
mask = cfg['yolo']['mask']
strides = cfg['yolo']['strides']
ignore_threshold = cfg['train']['ignore_threshold']
loss_type = cfg['train']['loss_type']
if init_weight:
load_weights(model, init_weight)
else:
print("Training from scratch")
num = 0
loss = [Loss(anchors[mask[i]],
strides[i],
train_dataset.num_classes,
ignore_threshold,
loss_type) for i in range(len(mask))]
ckpt_path = os.path.join(cfg["train"]["save_weight_path"], 'tmp', cfg["train"]["label"],
time.strftime("%Y%m%d%H%M", time.localtime()))
warmup_callback = [WarmUpScheduler(learning_rate=1e-3, warmup_step=1 * epoch_steps, verbose=1)]
eval_callback = [COCOEvalCheckpoint(save_path=os.path.join(ckpt_path, "mAP-{mAP:.4f}.h5"),
eval_model=eval_model,
model_cfg=cfg,
verbose=1)
]
lr_callback = [CosineAnnealingScheduler(learning_rate=1e-3,
eta_min=1e-6,
T_max=epochs * epoch_steps,
verbose=1)]
if not os.path.isdir(ckpt_path):
os.makedirs(ckpt_path)
os.makedirs(os.path.join(ckpt_path, 'train', 'plugins', 'profile'))
opt = Accumulative(optimizers.Adam(lr=0.), 16)
# warm-up
for i in range(num):
model.layers[i].trainable = False
print(model.layers[i].name)
print('Freeze the first {} layers of total {} layers.'.format(num, len(model.layers)))
model.compile(loss=loss, optimizer=opt, run_eagerly=False)
model.fit(train_dataset,
steps_per_epoch=epoch_steps,
epochs=1,
callbacks=warmup_callback
)
model.compile(loss=loss, optimizer=opt, run_eagerly=False)
model.fit(train_dataset,
steps_per_epoch=epoch_steps,
epochs=epochs // 5 * 2,
callbacks=eval_callback + lr_callback
)
for i in range(len(model.layers)): model.layers[i].trainable = True
print('Unfreeze all layers.')
# reset sample rate
model.compile(loss=loss, optimizer=opt, run_eagerly=False)
model.fit(train_dataset,
steps_per_epoch=epoch_steps,
epochs=epochs // 5 * 3,
callbacks=eval_callback + lr_callback
)
if __name__ == "__main__":
app.run(main)