-
Notifications
You must be signed in to change notification settings - Fork 0
/
RBC_C.c
180 lines (139 loc) · 6.85 KB
/
RBC_C.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//============================================================================
// Name : RBC_C.c
// Description : Basic RBC model with full depreciation
// Date : July 3, 2014
// Adapted from C++ to C by Santiago González <sangonz@gmail.com>
// This can be now compiled as C, C++, or Obejctive-C
//============================================================================
// AUXILIARY TIMER FUNCTIONS
#include <stdio.h>
#include <math.h> // power, fabs
// The next few lines are just for counting time
// Windows
#ifdef _WIN32
#include <Windows.h>
double get_cpu_time(){
FILETIME a,b,c,d;
if (GetProcessTimes(GetCurrentProcess(),&a,&b,&c,&d) != 0){
// Returns total user time.
// Can be tweaked to include kernel times as well.
return
(double)(d.dwLowDateTime |
((unsigned long long)d.dwHighDateTime << 32)) * 0.0000001;
}else{
// Handle error
return 0;
}
}
// Posix/Linux
#else
#include <time.h>
double get_cpu_time(){
return (double)clock() / CLOCKS_PER_SEC;
}
#endif
int main() {
double cpu0 = get_cpu_time();
///////////////////////////////////////////////////////////////////////////////////////////
// 1. Calibration
///////////////////////////////////////////////////////////////////////////////////////////
const double aalpha = 0.33333333333; // Elasticity of output w.r.t. capital
const double bbeta = 0.95; // Discount factor;
// Productivity values
double vProductivity[5] ={0.9792, 0.9896, 1.0000, 1.0106, 1.0212};
// Transition matrix
double mTransition[5][5] = {
{0.9727, 0.0273, 0.0000, 0.0000, 0.0000},
{0.0041, 0.9806, 0.0153, 0.0000, 0.0000},
{0.0000, 0.0082, 0.9837, 0.0082, 0.0000},
{0.0000, 0.0000, 0.0153, 0.9806, 0.0041},
{0.0000, 0.0000, 0.0000, 0.0273, 0.9727}
};
///////////////////////////////////////////////////////////////////////////////////////////
// 2. Steady State
///////////////////////////////////////////////////////////////////////////////////////////
double capitalSteadyState = pow(aalpha*bbeta,1/(1-aalpha));
double outputSteadyState = pow(capitalSteadyState,aalpha);
double consumptionSteadyState = outputSteadyState-capitalSteadyState;
printf("Output = %g, Capital = %g, Consumption = %g\n", outputSteadyState, capitalSteadyState, consumptionSteadyState);
printf(" ");
// We generate the grid of capital
int nCapital, nCapitalNextPeriod, gridCapitalNextPeriod, nProductivity, nProductivityNextPeriod;
const int nGridCapital = 17820, nGridProductivity = 5;
double vGridCapital[nGridCapital] = {0.0};
for (nCapital = 0; nCapital < nGridCapital; ++nCapital){
vGridCapital[nCapital] = 0.5*capitalSteadyState+0.00001*nCapital;
}
// 3. Required matrices and vectors
double mOutput[nGridCapital][nGridProductivity] = {0.0};
double mValueFunction[nGridCapital][nGridProductivity] = {0.0};
double mValueFunctionNew[nGridCapital][nGridProductivity] = {0.0};
double mPolicyFunction[nGridCapital][nGridProductivity]= {0.0};
double expectedValueFunction[nGridCapital][nGridProductivity] = {0.0};
// 4. We pre-build output for each point in the grid
for (nProductivity = 0; nProductivity<nGridProductivity; ++nProductivity){
for (nCapital = 0; nCapital < nGridCapital; ++nCapital){
mOutput[nCapital][nProductivity] = vProductivity[nProductivity]*pow(vGridCapital[nCapital],aalpha);
}
}
// 5. Main iteration
double maxDifference = 10.0, diff, diffHighSoFar;
double tolerance = 0.0000001;
double valueHighSoFar, valueProvisional, consumption, capitalChoice;
int iteration = 0;
while (maxDifference>tolerance){
for (nProductivity = 0;nProductivity<nGridProductivity;++nProductivity){
for (nCapital = 0;nCapital<nGridCapital;++nCapital){
expectedValueFunction[nCapital][nProductivity] = 0.0;
for (nProductivityNextPeriod = 0;nProductivityNextPeriod<nGridProductivity;++nProductivityNextPeriod){
expectedValueFunction[nCapital][nProductivity] += mTransition[nProductivity][nProductivityNextPeriod]*mValueFunction[nCapital][nProductivityNextPeriod];
}
}
}
for (nProductivity = 0;nProductivity<nGridProductivity;++nProductivity){
// We start from previous choice (monotonicity of policy function)
gridCapitalNextPeriod = 0;
for (nCapital = 0;nCapital<nGridCapital;++nCapital){
valueHighSoFar = -100000.0;
capitalChoice = vGridCapital[0];
for (nCapitalNextPeriod = gridCapitalNextPeriod;nCapitalNextPeriod<nGridCapital;++nCapitalNextPeriod){
consumption = mOutput[nCapital][nProductivity]-vGridCapital[nCapitalNextPeriod];
valueProvisional = (1-bbeta)*log(consumption)+bbeta*expectedValueFunction[nCapitalNextPeriod][nProductivity];
if (valueProvisional>valueHighSoFar){
valueHighSoFar = valueProvisional;
capitalChoice = vGridCapital[nCapitalNextPeriod];
gridCapitalNextPeriod = nCapitalNextPeriod;
}
else{
break; // We break when we have achieved the max
}
mValueFunctionNew[nCapital][nProductivity] = valueHighSoFar;
mPolicyFunction[nCapital][nProductivity] = capitalChoice;
}
}
}
diffHighSoFar = -100000.0;
for (nProductivity = 0;nProductivity<nGridProductivity;++nProductivity){
for (nCapital = 0;nCapital<nGridCapital;++nCapital){
diff = fabs(mValueFunction[nCapital][nProductivity]-mValueFunctionNew[nCapital][nProductivity]);
if (diff>diffHighSoFar){
diffHighSoFar = diff;
}
mValueFunction[nCapital][nProductivity] = mValueFunctionNew [nCapital][nProductivity];
}
}
maxDifference = diffHighSoFar;
iteration = iteration+1;
if (iteration % 10 == 0 || iteration ==1){
printf("Iteration = %d, Sup Diff = %g\n", iteration, maxDifference);
}
}
printf("Iteration = %d, Sup Diff = %g\n", iteration, maxDifference);
printf(" \n");
printf("My check = %g\n", mPolicyFunction[999][2]);
printf(" \n");
double cpu1 = get_cpu_time();
printf("Elapsed time is = %g\n", cpu1 - cpu0);
printf(" \n");
return 0;
}