-
Notifications
You must be signed in to change notification settings - Fork 6
/
demo.py
103 lines (81 loc) · 3.13 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#-*- coding:utf-8 -*-
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import os
import torch
import cv2
import time
import numpy as np
import argparse
from PIL import Image
from faceboxes import FaceBox
from data.config import cfg
from torch.autograd import Variable
from utils.augmentations import FaceBoxesBasicTransform
parser = argparse.ArgumentParser(description='faceboxes demo')
parser.add_argument('--save_dir',
type=str, default='tmp/',
help='Directory for detect result')
parser.add_argument('--model',
type=str,
default='weights/faceboxes.pth', help='trained model')
parser.add_argument('--thresh',
default=0.5, type=float,
help='Final confidence threshold')
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect(net, img_path, thresh):
#img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = Image.open(img_path)
if img.mode == 'L':
img = img.convert('RGB')
img = np.array(img)
height, width, _ = img.shape
x = FaceBoxesBasicTransform(img)
x = Variable(torch.from_numpy(x).unsqueeze(0))
if use_cuda:
x = x.cuda()
t1 = time.time()
y = net(x)
detections = y.data
scale = torch.Tensor([width, height, width, height])
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
t3 = time.time()
for i in range(detections.size(1)):
for j in range(detections.size(2)):
if detections[0, i, j, 0] >= args.thresh:
score = detections[0, i, j, 0]
pt = (detections[0, i, j, 1:] *
scale).cpu().numpy().astype(int)
left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3])
cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2)
conf = "{:.2f}".format(score)
text_size, baseline = cv2.getTextSize(
conf, cv2.FONT_HERSHEY_SIMPLEX, 0.3, 1)
p1 = (left_up[0], left_up[1] - text_size[1])
cv2.rectangle(img, (p1[0] - 2 // 2, p1[1] - 2 - baseline),
(p1[0] + text_size[0], p1[1] + text_size[1]), [255, 0, 0], -1)
cv2.putText(img, conf, (p1[0], p1[
1] + baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1, 8)
t2 = time.time()
print('detect:{} timer:{}'.format(img_path, t2 - t1))
cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img)
if __name__ == '__main__':
net = FaceBox(cfg, 'test')
net.load_state_dict(torch.load(args.model))
net.eval()
if use_cuda:
net = net.cuda()
net.benckmark = True
img_path = './img'
img_list = [os.path.join(img_path, x)
for x in os.listdir(img_path) if x.endswith('jpg')]
for path in img_list:
detect(net, path, args.thresh)