diff --git a/index.md b/index.md index d5d7b41..a5c4eb2 100644 --- a/index.md +++ b/index.md @@ -402,7 +402,7 @@ value of $x$ to plug into our series that will get us the natural log of $u$. We setting $u$ equal to the input of each new, combined logarithm and solve for $x$. For the added logarithm, set $u$ equal to $1 - x^2$: -[^artanh]: The function $\ln \biggl( \frac{1+x}{1-x} \biggr)$ happens to be the inverse hyperbolic tangent function $ \big( \text{artanh}(x)$ or $\tanh^{-1}(x) \big)$ +[^artanh]: The function $\ln \left( \frac{1+x}{1-x} \right)$ happens to be the inverse hyperbolic tangent function $ \big( \text{artanh}(x)$ or $\tanh^{-1}(x) \big)$ multiplied by 2. $$