forked from alecthomas/chroma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregexp.go
461 lines (424 loc) · 12.1 KB
/
regexp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
package chroma
import (
"fmt"
"os"
"regexp"
"strings"
"sync"
"unicode/utf8"
"github.com/dlclark/regexp2"
)
// A Rule is the fundamental matching unit of the Regex lexer state machine.
type Rule struct {
Pattern string
Type Emitter
Mutator Mutator
}
// An Emitter takes group matches and returns tokens.
type Emitter interface {
// Emit tokens for the given regex groups.
Emit(groups []string, lexer Lexer) Iterator
}
// EmitterFunc is a function that is an Emitter.
type EmitterFunc func(groups []string, lexer Lexer) Iterator
// Emit tokens for groups.
func (e EmitterFunc) Emit(groups []string, lexer Lexer) Iterator { return e(groups, lexer) }
// ByGroups emits a token for each matching group in the rule's regex.
func ByGroups(emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
iterators := make([]Iterator, 0, len(groups)-1)
if len(emitters) != len(groups)-1 {
iterators = append(iterators, Error.Emit(groups, lexer))
// panic(errors.Errorf("number of groups %q does not match number of emitters %v", groups, emitters))
} else {
for i, group := range groups[1:] {
iterators = append(iterators, emitters[i].Emit([]string{group}, lexer))
}
}
return Concaterator(iterators...)
})
}
// UsingByGroup emits tokens for the matched groups in the regex using a
// "sublexer". Used when lexing code blocks where the name of a sublexer is
// contained within the block, for example on a Markdown text block or SQL
// language block.
//
// The sublexer will be retrieved using sublexerGetFunc (typically
// internal.Get), using the captured value from the matched sublexerNameGroup.
//
// If sublexerGetFunc returns a non-nil lexer for the captured sublexerNameGroup,
// then tokens for the matched codeGroup will be emitted using the retrieved
// lexer. Otherwise, if the sublexer is nil, then tokens will be emitted from
// the passed emitter.
//
// Example:
//
// var Markdown = internal.Register(MustNewLexer(
// &Config{
// Name: "markdown",
// Aliases: []string{"md", "mkd"},
// Filenames: []string{"*.md", "*.mkd", "*.markdown"},
// MimeTypes: []string{"text/x-markdown"},
// },
// Rules{
// "root": {
// {"^(```)(\\w+)(\\n)([\\w\\W]*?)(^```$)",
// UsingByGroup(
// internal.Get,
// 2, 4,
// String, String, String, Text, String,
// ),
// nil,
// },
// },
// },
// ))
//
// See the lexers/m/markdown.go for the complete example.
//
// Note: panic's if the number emitters does not equal the number of matched
// groups in the regex.
func UsingByGroup(sublexerGetFunc func(string) Lexer, sublexerNameGroup, codeGroup int, emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
// bounds check
if len(emitters) != len(groups)-1 {
panic("UsingByGroup expects number of emitters to be the same as len(groups)-1")
}
// grab sublexer
sublexer := sublexerGetFunc(groups[sublexerNameGroup])
// build iterators
iterators := make([]Iterator, len(groups)-1)
for i, group := range groups[1:] {
if i == codeGroup-1 && sublexer != nil {
var err error
iterators[i], err = sublexer.Tokenise(nil, groups[codeGroup])
if err != nil {
panic(err)
}
} else {
iterators[i] = emitters[i].Emit([]string{group}, lexer)
}
}
return Concaterator(iterators...)
})
}
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
func Using(lexer Lexer) Emitter {
return EmitterFunc(func(groups []string, _ Lexer) Iterator {
it, err := lexer.Tokenise(&TokeniseOptions{State: "root", Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// UsingSelf is like Using, but uses the current Lexer.
func UsingSelf(state string) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
it, err := lexer.Tokenise(&TokeniseOptions{State: state, Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// Words creates a regex that matches any of the given literal words.
func Words(prefix, suffix string, words ...string) string {
for i, word := range words {
words[i] = regexp.QuoteMeta(word)
}
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
}
// Tokenise text using lexer, returning tokens as a slice.
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]Token, error) {
var out []Token
it, err := lexer.Tokenise(options, text)
if err != nil {
return nil, err
}
for t := it(); t != EOF; t = it() {
out = append(out, t)
}
return out, nil
}
// Rules maps from state to a sequence of Rules.
type Rules map[string][]Rule
// Clone returns a clone of the Rules.
func (r Rules) Clone() Rules {
out := map[string][]Rule{}
for key, rules := range r {
out[key] = make([]Rule, len(rules))
copy(out[key], rules)
}
return out
}
// MustNewLexer creates a new Lexer or panics.
func MustNewLexer(config *Config, rules Rules) *RegexLexer {
lexer, err := NewLexer(config, rules)
if err != nil {
panic(err)
}
return lexer
}
// NewLexer creates a new regex-based Lexer.
//
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
// that match input, optionally modify lexer state, and output tokens.
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) {
if config == nil {
config = &Config{}
}
if _, ok := rules["root"]; !ok {
return nil, fmt.Errorf("no \"root\" state")
}
compiledRules := map[string][]*CompiledRule{}
for state, rules := range rules {
compiledRules[state] = nil
for _, rule := range rules {
flags := ""
if !config.NotMultiline {
flags += "m"
}
if config.CaseInsensitive {
flags += "i"
}
if config.DotAll {
flags += "s"
}
compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags})
}
}
return &RegexLexer{
config: config,
rules: compiledRules,
}, nil
}
// Trace enables debug tracing.
func (r *RegexLexer) Trace(trace bool) *RegexLexer {
r.trace = trace
return r
}
// A CompiledRule is a Rule with a pre-compiled regex.
//
// Note that regular expressions are lazily compiled on first use of the lexer.
type CompiledRule struct {
Rule
Regexp *regexp2.Regexp
flags string
}
// CompiledRules is a map of rule name to sequence of compiled rules in that rule.
type CompiledRules map[string][]*CompiledRule
// LexerState contains the state for a single lex.
type LexerState struct {
Lexer *RegexLexer
Text []rune
Pos int
Rules CompiledRules
Stack []string
State string
Rule int
// Group matches.
Groups []string
// Custum context for mutators.
MutatorContext map[interface{}]interface{}
iteratorStack []Iterator
options *TokeniseOptions
}
// Set mutator context.
func (l *LexerState) Set(key interface{}, value interface{}) {
l.MutatorContext[key] = value
}
// Get mutator context.
func (l *LexerState) Get(key interface{}) interface{} {
return l.MutatorContext[key]
}
// Iterator returns the next Token from the lexer.
func (l *LexerState) Iterator() Token { // nolint: gocognit
for l.Pos < len(l.Text) && len(l.Stack) > 0 {
// Exhaust the iterator stack, if any.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == EOF {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
l.State = l.Stack[len(l.Stack)-1]
if l.Lexer.trace {
fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:]))
}
selectedRule, ok := l.Rules[l.State]
if !ok {
panic("unknown state " + l.State)
}
ruleIndex, rule, groups := matchRules(l.Text, l.Pos, selectedRule)
// No match.
if groups == nil {
// From Pygments :\
//
// If the RegexLexer encounters a newline that is flagged as an error token, the stack is
// emptied and the lexer continues scanning in the 'root' state. This can help producing
// error-tolerant highlighting for erroneous input, e.g. when a single-line string is not
// closed.
if l.Text[l.Pos] == '\n' && l.State != l.options.State {
l.Stack = []string{l.options.State}
continue
}
l.Pos++
return Token{Error, string(l.Text[l.Pos-1 : l.Pos])}
}
l.Rule = ruleIndex
l.Groups = groups
l.Pos += utf8.RuneCountInString(groups[0])
if rule.Mutator != nil {
if err := rule.Mutator.Mutate(l); err != nil {
panic(err)
}
}
if rule.Type != nil {
l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l.Lexer))
}
}
// Exhaust the IteratorStack, if any.
// Duplicate code, but eh.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == EOF {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
// If we get to here and we still have text, return it as an error.
if l.Pos != len(l.Text) && len(l.Stack) == 0 {
value := string(l.Text[l.Pos:])
l.Pos = len(l.Text)
return Token{Type: Error, Value: value}
}
return EOF
}
// RegexLexer is the default lexer implementation used in Chroma.
type RegexLexer struct {
config *Config
analyser func(text string) float32
trace bool
mu sync.Mutex
compiled bool
rules map[string][]*CompiledRule
}
// SetAnalyser sets the analyser function used to perform content inspection.
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
r.analyser = analyser
return r
}
func (r *RegexLexer) AnalyseText(text string) float32 { // nolint
if r.analyser != nil {
return r.analyser(text)
}
return 0.0
}
func (r *RegexLexer) Config() *Config { // nolint
return r.config
}
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
func (r *RegexLexer) maybeCompile() (err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.compiled {
return nil
}
for state, rules := range r.rules {
for i, rule := range rules {
if rule.Regexp == nil {
pattern := "(?:" + rule.Pattern + ")"
if rule.flags != "" {
pattern = "(?" + rule.flags + ")" + pattern
}
pattern = `\G` + pattern
rule.Regexp, err = regexp2.Compile(pattern, 0)
if err != nil {
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
}
}
}
}
restart:
seen := map[LexerMutator]bool{}
for state := range r.rules {
for i := 0; i < len(r.rules[state]); i++ {
rule := r.rules[state][i]
if compile, ok := rule.Mutator.(LexerMutator); ok {
if seen[compile] {
return fmt.Errorf("saw mutator %T twice; this should not happen", compile)
}
seen[compile] = true
if err := compile.MutateLexer(r.rules, state, i); err != nil {
return err
}
// Process the rules again in case the mutator added/removed rules.
//
// This sounds bad, but shouldn't be significant in practice.
goto restart
}
}
}
r.compiled = true
return nil
}
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) { // nolint
if err := r.maybeCompile(); err != nil {
return nil, err
}
if options == nil {
options = defaultOptions
}
if options.EnsureLF {
text = ensureLF(text)
}
if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") {
text += "\n"
}
state := &LexerState{
options: options,
Lexer: r,
Text: []rune(text),
Stack: []string{options.State},
Rules: r.rules,
MutatorContext: map[interface{}]interface{}{},
}
return state.Iterator, nil
}
func matchRules(text []rune, pos int, rules []*CompiledRule) (int, *CompiledRule, []string) {
for i, rule := range rules {
match, err := rule.Regexp.FindRunesMatchStartingAt(text, pos)
if match != nil && err == nil && match.Index == pos {
groups := []string{}
for _, g := range match.Groups() {
groups = append(groups, g.String())
}
return i, rule, groups
}
}
return 0, &CompiledRule{}, nil
}
// replace \r and \r\n with \n
// same as strings.ReplaceAll but more efficient
func ensureLF(text string) string {
buf := make([]byte, len(text))
var j int
for i := 0; i < len(text); i++ {
c := text[i]
if c == '\r' {
if i < len(text)-1 && text[i+1] == '\n' {
continue
}
c = '\n'
}
buf[j] = c
j++
}
return string(buf[:j])
}