-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdenoise_FFD.py
39 lines (31 loc) · 1.28 KB
/
denoise_FFD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import torch
from torch.autograd import Variable
def denoise_FFD(imorig,noise_sigma,cuda,model):
# logger = init_logger_ipol()
imorig = np.expand_dims(imorig, 0)
imorig = np.float32(imorig/255.)
imorig = torch.Tensor(imorig)
# Load saved weights
if cuda:
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
# model.load_state_dict(state_dict)
# model.load_state_dict(state_dict['state_dict'])
# Sets the model in evaluation mode (e.g. it removes BN)
# model.eval()
# we do not need to add noise
imnoisy = imorig.clone()
# Test mode
with torch.no_grad(): # PyTorch v0.4.0
imorig, imnoisy = Variable(imorig.type(dtype)), Variable(imnoisy.type(dtype))
nsigma = Variable(torch.FloatTensor([noise_sigma]).type(dtype))
# Estimate noise and subtract it to the input image
im_noise_estim = model(imnoisy, nsigma)
outim = torch.clamp(imnoisy-im_noise_estim, 0., 1.)
# return outim
imnoise_es_cpu = (im_noise_estim.data.cpu().numpy()[0, 0, :]*255.).astype(np.float32)
imnoise_es_cpuclip = ((imnoisy-outim).data.cpu().numpy()[0, 0, :] * 255.).astype(np.float32)
# return variable_to_cv2_image(outim)
return imnoise_es_cpuclip