Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

metadata>run_metadata #23

Merged
merged 1 commit into from
Nov 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ for step_name in step_names:
)
model: ClassifierMixin = hp_output.load()
# fetch metadata we attached earlier
metric = float(hp_output.metadata["metric"].value)
metric = float(hp_output.run_metadata["metric"].value)
if best_model is None or best_metric < metric:
best_model = model
```
Expand Down
2 changes: 1 addition & 1 deletion template/steps/deployment/deployment_deploy.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def deployment_deploy() -> (
deployment_service = mlflow_model_registry_deployer_step.entrypoint(
registry_model_name=model_version.name,
registry_model_version=model_version.get_model_artifact("model")
.metadata["model_registry_version"]
.run_metadata["model_registry_version"]
.value,
replace_existing=True,
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -74,11 +74,11 @@ def promote_with_metric_compare(
logger.info(f"Current model version was promoted to '{target_env}'.")

# Promote in Model Registry
latest_version_model_registry_number = latest_version.get_model_artifact("model").metadata["model_registry_version"].value
latest_version_model_registry_number = latest_version.get_model_artifact("model").run_metadata["model_registry_version"].value
if current_version_number is None:
current_version_model_registry_number = latest_version_model_registry_number
else:
current_version_model_registry_number = current_version.get_model_artifact("model").metadata["model_registry_version"].value
current_version_model_registry_number = current_version.get_model_artifact("model").run_metadata["model_registry_version"].value
promote_in_model_registry(
latest_version=latest_version_model_registry_number,
current_version=current_version_model_registry_number,
Expand All @@ -87,7 +87,7 @@ def promote_with_metric_compare(
)
promoted_version = latest_version_model_registry_number
else:
promoted_version = current_version.get_model_artifact("model").metadata["model_registry_version"].value
promoted_version = current_version.get_model_artifact("model").run_metadata["model_registry_version"].value

logger.info(
f"Current model version in `{target_env}` is `{promoted_version}` registered in Model Registry"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,11 @@ def promote_latest_version(
logger.info(f"Current model version was promoted to '{target_env}'.")

# Promote in Model Registry
latest_version_model_registry_number = latest_version.get_model_artifact("model").metadata["model_registry_version"].value
latest_version_model_registry_number = latest_version.get_model_artifact("model").run_metadata["model_registry_version"].value
if current_version.number is None:
current_version_model_registry_number = latest_version_model_registry_number
else:
current_version_model_registry_number = current_version.get_model_artifact("model").metadata["model_registry_version"].value
current_version_model_registry_number = current_version.get_model_artifact("model").run_metadata["model_registry_version"].value
promote_in_model_registry(
latest_version=latest_version_model_registry_number,
current_version=current_version_model_registry_number,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def hp_tuning_select_best_model(
)
model: ClassifierMixin = hp_output.load()
# fetch metadata we attached earlier
metric = float(hp_output.metadata["metric"].value)
metric = float(hp_output.run_metadata["metric"].value)
if best_model is None or best_metric < metric:
best_model = model
### YOUR CODE ENDS HERE ###
Expand Down