-
Notifications
You must be signed in to change notification settings - Fork 260
/
common.py
164 lines (134 loc) · 4.3 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
# File: common.py
import numpy as np
import cv2
from tensorpack.dataflow import RNGDataFlow
from tensorpack.dataflow.imgaug import ImageAugmentor, ResizeTransform
class DataFromListOfDict(RNGDataFlow):
def __init__(self, lst, keys, shuffle=False):
self._lst = lst
self._keys = keys
self._shuffle = shuffle
self._size = len(lst)
def __len__(self):
return self._size
def __iter__(self):
if self._shuffle:
self.rng.shuffle(self._lst)
for dic in self._lst:
dp = [dic[k] for k in self._keys]
yield dp
class CustomResize(ImageAugmentor):
"""
Try resizing the shortest edge to a certain number
while avoiding the longest edge to exceed max_size.
"""
def __init__(self, short_edge_length, max_size, interp=cv2.INTER_LINEAR):
"""
Args:
short_edge_length ([int, int]): a [min, max] interval from which to sample the
shortest edge length.
max_size (int): maximum allowed longest edge length.
"""
super(CustomResize, self).__init__()
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
self._init(locals())
def get_transform(self, img):
h, w = img.shape[:2]
size = self.rng.randint(
self.short_edge_length[0], self.short_edge_length[1] + 1)
scale = size * 1.0 / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > self.max_size:
scale = self.max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return ResizeTransform(h, w, newh, neww, self.interp)
def box_to_point8(boxes):
"""
Args:
boxes: nx4
Returns:
(nx4)x2
"""
b = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]]
b = b.reshape((-1, 2))
return b
def point8_to_box(points):
"""
Args:
points: (nx4)x2
Returns:
nx4 boxes (x1y1x2y2)
"""
p = points.reshape((-1, 4, 2))
minxy = p.min(axis=1) # nx2
maxxy = p.max(axis=1) # nx2
return np.concatenate((minxy, maxxy), axis=1)
def polygons_to_mask(polys, height, width):
"""
Convert polygons to binary masks.
Args:
polys: a list of nx2 float array. Each array contains many (x, y) coordinates.
Returns:
a binary matrix of (height, width)
"""
polys = [p.flatten().tolist() for p in polys]
assert len(polys) > 0, "Polygons are empty!"
import pycocotools.mask as cocomask
rles = cocomask.frPyObjects(polys, height, width)
rle = cocomask.merge(rles)
return cocomask.decode(rle)
def clip_boxes(boxes, shape):
"""
Args:
boxes: (...)x4, float
shape: h, w
"""
orig_shape = boxes.shape
boxes = boxes.reshape([-1, 4])
h, w = shape
boxes[:, [0, 1]] = np.maximum(boxes[:, [0, 1]], 0)
boxes[:, 2] = np.minimum(boxes[:, 2], w)
boxes[:, 3] = np.minimum(boxes[:, 3], h)
return boxes.reshape(orig_shape)
def filter_boxes_inside_shape(boxes, shape):
"""
Args:
boxes: (nx4), float
shape: (h, w)
Returns:
indices: (k, )
selection: (kx4)
"""
assert boxes.ndim == 2, boxes.shape
assert len(shape) == 2, shape
h, w = shape
indices = np.where(
(boxes[:, 0] >= 0) &
(boxes[:, 1] >= 0) &
(boxes[:, 2] <= w) &
(boxes[:, 3] <= h))[0]
return indices, boxes[indices, :]
try:
import pycocotools.mask as cocomask
# Much faster than utils/np_box_ops
def np_iou(A, B):
def to_xywh(box):
box = box.copy()
box[:, 2] -= box[:, 0]
box[:, 3] -= box[:, 1]
return box
ret = cocomask.iou(
to_xywh(A), to_xywh(B),
np.zeros((len(B),), dtype=np.bool))
# can accelerate even more, if using float32
return ret.astype('float32')
except ImportError:
from utils.np_box_ops import iou as np_iou # noqa