-
Notifications
You must be signed in to change notification settings - Fork 8
/
test.py
69 lines (52 loc) · 2.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
## Multi-Stage Progressive Image Restoration
## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao
## https://arxiv.org/abs/2102.02808
"""
import numpy as np
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import utils
from data_RGB import get_test_data
from MPRNet import MPRNet
from skimage import img_as_ubyte
from pdb import set_trace as stx
parser = argparse.ArgumentParser(description='Image Deraining using MPRNet')
parser.add_argument('--input_dir', default='./Datasets/test/', type=str, help='Directory of validation images')
parser.add_argument('--result_dir', default='./results/', type=str, help='Directory for results')
parser.add_argument('--weights', default='./pretrained_models/model_deraining.pth', type=str, help='Path to weights')
parser.add_argument('--gpus', default='0', type=str, help='CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
model_restoration = MPRNet()
utils.load_checkpoint(model_restoration,args.weights)
print("===>Testing using weights: ",args.weights)
model_restoration.cuda()
model_restoration = nn.DataParallel(model_restoration)
model_restoration.eval()
datasets = ['Rain100L', 'Rain100H', 'Test100', 'Test1200', 'Test2800']
# datasets = ['Rain100L']
for dataset in datasets:
rgb_dir_test = os.path.join(args.input_dir, dataset, 'input')
test_dataset = get_test_data(rgb_dir_test, img_options={})
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4, drop_last=False, pin_memory=True)
result_dir = os.path.join(args.result_dir, dataset)
utils.mkdir(result_dir)
with torch.no_grad():
for ii, data_test in enumerate(tqdm(test_loader), 0):
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
input_ = data_test[0].cuda()
filenames = data_test[1]
restored = model_restoration(input_)
restored = torch.clamp(restored[0],0,1)
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
for batch in range(len(restored)):
restored_img = img_as_ubyte(restored[batch])
utils.save_img((os.path.join(result_dir, filenames[batch]+'.png')), restored_img)