-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
198 lines (177 loc) · 5.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import yaml
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
from models.detector import Detector
from data import (
COCODetection,
VOCDetection,
XMLDetection,
DataPrefetcher,
detection_collate,
)
from utils import (
Timer,
ModelEMA,
MultiBoxLoss,
get_prior_box,
tencent_trick,
adjust_learning_rate,
)
cudnn.benchmark = True
### For Reproducibility ###
# import random
# SEED = 0
# random.seed(SEED)
# np.random.seed(SEED)
# torch.manual_seed(SEED)
# torch.cuda.manual_seed_all(SEED)
# torch.cuda.empty_cache()
# cudnn.benchmark = False
# cudnn.deterministic = True
# cudnn.enabled = True
### For Reproducibility ###
parser = argparse.ArgumentParser(description="Mutual Guide Training")
parser.add_argument("--config", type=str)
parser.add_argument("--dataset", default="COCO", type=str)
parser.add_argument("--resume_ckpt", default=None, type=str)
args = parser.parse_args()
def save_model(
model: nn.Module,
iteration: int,
suffix: str,
) -> None:
os.makedirs(args.save_folder, exist_ok=True)
save_path = os.path.join(
args.save_folder,
"{}_{}_{}_size{}_anchor{}_{}_{}.pth".format(
args.dataset,
args.neck,
args.backbone,
args.image_size,
args.anchor_size,
"MG" if args.mutual_guide else "Retina",
suffix,
),
)
tosave = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"iteration": iteration,
}
print("Saving to {}".format(save_path))
torch.save(tosave, save_path)
return
if __name__ == "__main__":
print("Extracting params...")
with open(args.config, "r") as f:
configs = yaml.safe_load(f)
for config in configs.values():
for key, value in config.items():
setattr(args, key, value)
print(args)
print("Loading dataset...")
if args.dataset == "COCO":
train_sets = [("2017", "train")]
dataset = COCODetection(train_sets, args.image_size)
elif args.dataset == "VOC":
train_sets = [("2007", "trainval"), ("2012", "trainval")]
dataset = VOCDetection(train_sets, args.image_size)
elif args.dataset == "XML":
dataset = XMLDetection("train", args.image_size)
else:
raise NotImplementedError("ERROR: Unkown dataset {}".format(args.dataset))
epoch_size = len(dataset) // args.batch_size
end_iter = epoch_size * args.max_epoch
print("Loading network...")
model = Detector(
args.image_size,
dataset.num_classes,
args.backbone,
args.neck,
mode="normal",
).cuda()
ema_model = ModelEMA(model)
optimizer = optim.SGD(
tencent_trick(model),
lr=args.lr,
momentum=0.9,
weight_decay=0.0005,
nesterov=True,
)
scaler = torch.cuda.amp.GradScaler()
if args.resume_ckpt:
print("Resuming checkpoint from", args.resume_ckpt)
state_dict = torch.load(args.resume_ckpt)
model.load_state_dict(state_dict["model"], strict=True)
optimizer.load_state_dict(state_dict["optimizer"])
start_iter = state_dict["iteration"]
else:
start_iter = 0
print("Preparing criterion and anchor boxes...")
criterion = MultiBoxLoss(args.mutual_guide)
priors = get_prior_box(args.anchor_size, args.image_size).cuda()
print(
"Training {}-{}-{} on {} with {} images".format(
"MG" if args.mutual_guide else "Retina",
args.neck,
args.backbone,
dataset.name,
len(dataset),
)
)
timer = Timer()
for iteration in range(start_iter, end_iter):
if iteration % epoch_size == 0:
# save checkpoint
save_model(ema_model.ema, iteration, "CKPT")
# create batch iterator
rand_loader = data.DataLoader(
dataset,
args.batch_size,
shuffle=True,
num_workers=4,
collate_fn=detection_collate,
)
prefetcher = DataPrefetcher(rand_loader)
model.train()
# traning iteratoin
timer.tic()
adjust_learning_rate(
optimizer,
args.lr,
iteration,
args.warm_iter,
end_iter,
)
(images, targets) = prefetcher.next()
with torch.cuda.amp.autocast():
out = model(images)
loss = criterion(out, priors, targets)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
ema_model.update(model)
load_time = timer.toc()
# logging
if iteration % 100 == 0:
print(
"iter {}/{}, lr {:.6f}, loss {:.2f}, time {:.2f}s, eta {:.2f}h".format(
iteration,
end_iter,
optimizer.param_groups[0]["lr"],
loss.item(),
load_time,
load_time * (end_iter - iteration) / 3600,
)
)
timer.clear()
# model saving
save_model(ema_model.ema, iteration, "Final")