-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathheatmappic.py
81 lines (65 loc) · 3.32 KB
/
heatmappic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import glob
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from util import min_max_normalization, median_filter
import matplotlib
from CSIKit.reader import get_reader
from CSIKit.util import csitools
import re
# 指定默认字体
matplotlib.rcParams['font.sans-serif'] = ['SimSun']
matplotlib.rcParams['font.family']='sans-serif'
# 解决负号'-'显示为方块的问题
matplotlib.rcParams['axes.unicode_minus'] = False
# 指定数据集目录
directory = os.getcwd()+'/dataset_test' # 更改为实际路径
# 函数:绘制和保存热力图
def save_heatmap(data, file_name,title):
# 检查文件是否已存在
if os.path.exists(file_name):
print(f"{file_name} 已存在,跳过生成。")
return
plt.figure(figsize=(10, 8))
# 如果data是DataFrame, 转换为NumPy数组
data_array = data.values if isinstance(data, pd.DataFrame) else data
# 检查数组中是否有无穷值
if np.isinf(data_array).any():
# 替换无穷大值为NaN, 然后填充为该列的最小值
data_array = np.where(np.isinf(data_array), np.nan, data_array)
min_per_column = np.nanmin(data_array, axis=0)
data_array = np.where(np.isnan(data_array), min_per_column, data_array)
# 绘制热力图
sns.heatmap(data_array, cmap="coolwarm", cbar_kws={'label': 'Signal Strength'})
plt.xlabel("Subcarriers")
plt.ylabel("Timestamp")
plt.title(title+"热力图")
plt.savefig(file_name)
plt.close()
print(f"热力图已保存为{file_name}")
if __name__ == '__main__':
# 遍历目录下的所有.dat文件
for dat_file in glob.glob(os.path.join(directory, '*.dat')):
# 从文件名中提取坐标
match = re.search(r'\((\d+),(\d+)\).dat', os.path.basename(dat_file))
if match:
x_label, y_label = match.groups()
# 读取CSI数据
my_reader = get_reader(dat_file)
csi_data = my_reader.read_file(dat_file, scaled=True)
# 为每个接收天线创建热力图
for rx_ant in range(3): # 假设有三个接收天线
# 获取幅度和相位信息
csi_amplitude = csitools.get_CSI(csi_data, metric="amplitude")[0][:, :, rx_ant, 0]
csi_phase = csitools.get_CSI(csi_data, metric="phase")[0][:, :, rx_ant, 0]
# 创建幅度和相位的热力图
save_heatmap(csi_amplitude, os.path.join(directory, f"{x_label}_{y_label}_ant{rx_ant}_amplitude_raw.png"), f"Ant{rx_ant} 原始幅度")
save_heatmap(csi_phase, os.path.join(directory, f"{x_label}_{y_label}_ant{rx_ant}_phase_raw.png"), f"Ant{rx_ant} 原始相位")
# 应用中值滤波和最小-最大规范化
amplitude_filtered_normalized = min_max_normalization(median_filter(csi_amplitude))
phase_filtered_normalized = min_max_normalization(median_filter(csi_phase))
# 保存处理后的热力图
save_heatmap(amplitude_filtered_normalized, os.path.join(directory, f"{x_label}_{y_label}_ant{rx_ant}_amplitude_filtered.png"), f"Ant{rx_ant} 滤波后幅度")
save_heatmap(phase_filtered_normalized, os.path.join(directory, f"{x_label}_{y_label}_ant{rx_ant}_phase_filtered.png"), f"Ant{rx_ant} 滤波后相位")