-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
355 lines (294 loc) · 12.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
import random
import trimesh
import numpy as np
from torch import nn
from torch.nn import functional as F
from torch.utils import data
from scipy.spatial import Delaunay
from skimage.measure import marching_cubes
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
PointLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesVertex,
)
######################### Dataset util functions ###########################
# Get data sampler
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
# Get data minibatch
def sample_data(loader):
while True:
for batch in loader:
yield batch
############################## Model weights util functions #################
# Turn model gradients on/off
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def requires_grad_parts(model, flag=False):
params_dict_g = dict(model.named_parameters())
for key, value in params_dict_g.items():
decoder_cond = ('style_editing' in key)
if decoder_cond:
value.requires_grad = flag
# Exponential moving average for generator weights
def accumulate(model1, model2, decay=0.999, isforediting=False):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
if isforediting:
for k in par1.keys():
if 'style_editing' in k:
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
else:
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
################### Latent code (Z) sampling util functions ####################
# Sample Z space latent codes for the generator
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def make_label(batch, latent_dim, device):
labels = torch.randint(0, 2, (batch, latent_dim), device=device).float()
return labels
def make_mm(batch, mm_dim, device):
mm = torch.randn(batch, mm_dim, device=device)
return mm
def make_label(batch, latent_dim, device):
labels = torch.randint(0, 2, (batch, latent_dim), device=device).float()
return labels
def make_one_hot_label(batch, latent_dim, device):
labels = torch.randint(0, latent_dim, (batch,), device=device)
labels = torch.nn.functional.one_hot(labels, num_classes=latent_dim)
id = torch.randint(0,2,(1,), device=device)
if 0 in id:
return labels
else:
return - labels
def make_specific_one_hot_label(batch, latent_dim, device):
att = torch.randint(0,2,(1,), device=device)
if att == 0:
label = torch.randint(0, 1, (batch,), device=device) + 4
else:
label = torch.randint(0, 1, (batch,), device=device) + 5
label = torch.nn.functional.one_hot(label, num_classes=latent_dim)
id = torch.randint(0,2,(1,), device=device)
if 0 in id:
return label
else:
return - label
################# Camera parameters sampling ####################
def generate_camera_params(resolution, device, batch=1, locations=None, sweep=False,
uniform=False, azim_range=0.3, elev_range=0.15,
fov_ang=6, dist_radius=0.12):
if locations != None:
azim = locations[:,0].view(-1,1)
elev = locations[:,1].view(-1,1)
# generate intrinsic parameters
# fix distance to 1
dist = torch.ones(azim.shape[0], 1, device=device)
near, far = (dist - dist_radius).unsqueeze(-1), (dist + dist_radius).unsqueeze(-1)
fov_angle = fov_ang * torch.ones(azim.shape[0], 1, device=device).view(-1,1) * np.pi / 180
focal = 0.5 * resolution / torch.tan(fov_angle).unsqueeze(-1)
elif sweep:
# generate camera locations on the unit sphere
azim = (-azim_range + (2 * azim_range / 7) * torch.arange(8, device=device)).view(-1,1).repeat(batch,1)
elev = (-elev_range + 2 * elev_range * torch.rand(batch, 1, device=device).repeat(1,8).view(-1,1))
# generate intrinsic parameters
dist = (torch.ones(batch, 1, device=device)).repeat(1,8).view(-1,1)
near, far = (dist - dist_radius).unsqueeze(-1), (dist + dist_radius).unsqueeze(-1)
fov_angle = fov_ang * torch.ones(batch, 1, device=device).repeat(1,8).view(-1,1) * np.pi / 180
focal = 0.5 * resolution / torch.tan(fov_angle).unsqueeze(-1)
else:
# sample camera locations on the unit sphere
if uniform:
azim = (-azim_range + 2 * azim_range * torch.rand(batch, 1, device=device))
elev = (-elev_range + 2 * elev_range * torch.rand(batch, 1, device=device))
else:
azim = (azim_range * torch.randn(batch, 1, device=device))
elev = (elev_range * torch.randn(batch, 1, device=device))
# generate intrinsic parameters
dist = torch.ones(batch, 1, device=device) # restrict camera position to be on the unit sphere
near, far = (dist - dist_radius).unsqueeze(-1), (dist + dist_radius).unsqueeze(-1)
fov_angle = fov_ang * torch.ones(batch, 1, device=device) * np.pi / 180 # full fov is 12 degrees
focal = 0.5 * resolution / torch.tan(fov_angle).unsqueeze(-1)
viewpoint = torch.cat([azim, elev], 1)
#### Generate camera extrinsic matrix ##########
# convert angles to xyz coordinates
x = torch.cos(elev) * torch.sin(azim)
y = torch.sin(elev)
z = torch.cos(elev) * torch.cos(azim)
camera_dir = torch.stack([x, y, z], dim=1).view(-1,3)
camera_loc = dist * camera_dir
# get rotation matrices (assume object is at the world coordinates origin)
up = torch.tensor([[0,1,0]]).float().to(device) * torch.ones_like(dist)
z_axis = F.normalize(camera_dir, eps=1e-5) # the -z direction points into the screen
x_axis = F.normalize(torch.cross(up, z_axis, dim=1), eps=1e-5)
y_axis = F.normalize(torch.cross(z_axis, x_axis, dim=1), eps=1e-5)
is_close = torch.isclose(x_axis, torch.tensor(0.0), atol=5e-3).all(dim=1, keepdim=True)
if is_close.any():
replacement = F.normalize(torch.cross(y_axis, z_axis, dim=1), eps=1e-5)
x_axis = torch.where(is_close, replacement, x_axis)
R = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1)
T = camera_loc[:, :, None]
extrinsics = torch.cat((R.transpose(1,2),T), -1)
return extrinsics, focal, near, far, viewpoint
#################### Mesh generation util functions ########################
# Reshape sampling volume to camera frostum
def align_volume(volume, near=0.88, far=1.12):
b, h, w, d, c = volume.shape
yy, xx, zz = torch.meshgrid(torch.linspace(-1, 1, h),
torch.linspace(-1, 1, w),
torch.linspace(-1, 1, d))
grid = torch.stack([xx, yy, zz], -1).to(volume.device)
frostum_adjustment_coeffs = torch.linspace(far / near, 1, d).view(1,1,1,-1,1).to(volume.device)
frostum_grid = grid.unsqueeze(0)
frostum_grid[...,:2] = frostum_grid[...,:2] * frostum_adjustment_coeffs
out_of_boundary = torch.any((frostum_grid.lt(-1).logical_or(frostum_grid.gt(1))), -1, keepdim=True)
frostum_grid = frostum_grid.permute(0,3,1,2,4).contiguous()
permuted_volume = volume.permute(0,4,3,1,2).contiguous()
final_volume = F.grid_sample(permuted_volume, frostum_grid, padding_mode="border", align_corners=True)
final_volume = final_volume.permute(0,3,4,2,1).contiguous()
# set a non-zero value to grid locations outside of the frostum to avoid marching cubes distortions.
# It happens because pytorch grid_sample uses zeros padding.
final_volume[out_of_boundary] = 1
return final_volume
# Extract mesh with marching cubes
def extract_mesh_with_marching_cubes(sdf):
b, h, w, d, _ = sdf.shape
# change coordinate order from (y,x,z) to (x,y,z)
sdf_vol = sdf[0,...,0].permute(1,0,2).cpu().numpy()
# scale vertices
verts, faces, _, _ = marching_cubes(sdf_vol, 0)
verts[:,0] = (verts[:,0]/float(w)-0.5)*0.24
verts[:,1] = (verts[:,1]/float(h)-0.5)*0.24
verts[:,2] = (verts[:,2]/float(d)-0.5)*0.24
# fix normal direction
verts[:,2] *= -1; verts[:,1] *= -1
mesh = trimesh.Trimesh(verts, faces)
return mesh
# Generate mesh from xyz point cloud
def xyz2mesh(xyz):
b, _, h, w = xyz.shape
x, y = np.meshgrid(np.arange(h), np.arange(w))
# Extract mesh faces from xyz maps
tri = Delaunay(np.concatenate((x.reshape((h*w, 1)), y.reshape((h*w, 1))), 1))
faces = tri.simplices
# invert normals
faces[:,[0, 1]] = faces[:,[1, 0]]
# generate_meshes
mesh = trimesh.Trimesh(xyz.squeeze(0).permute(1,2,0).view(h*w,3).cpu().numpy(), faces)
return mesh
################# Mesh rendering util functions #############################
def add_textures(meshes:Meshes, vertex_colors=None) -> Meshes:
verts = meshes.verts_padded()
if vertex_colors is None:
vertex_colors = torch.ones_like(verts) # (N, V, 3)
textures = TexturesVertex(verts_features=vertex_colors)
meshes_t = Meshes(
verts=verts,
faces=meshes.faces_padded(),
textures=textures,
verts_normals=meshes.verts_normals_padded(),
)
return meshes_t
def create_cameras(
R=None, T=None,
azim=0, elev=0., dist=1.,
fov=12., znear=0.01,
device="cuda") -> FoVPerspectiveCameras:
"""
all the camera parameters can be a single number, a list, or a torch tensor.
"""
if R is None or T is None:
R, T = look_at_view_transform(dist=dist, azim=azim, elev=elev, device=device)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T, znear=znear, fov=fov)
return cameras
def create_mesh_renderer(
cameras: FoVPerspectiveCameras,
image_size: int = 256,
blur_radius: float = 1e-6,
light_location=((-0.5, 1., 5.0),),
device="cuda",
**light_kwargs,
):
"""
If don't want to show direct texture color without shading, set the light_kwargs as
ambient_color=((1, 1, 1), ), diffuse_color=((0, 0, 0), ), specular_color=((0, 0, 0), )
"""
# We will also create a Phong renderer. This is simpler and only needs to render one face per pixel.
raster_settings = RasterizationSettings(
image_size=image_size,
blur_radius=blur_radius,
faces_per_pixel=5,
)
# We can add a point light in front of the object.
lights = PointLights(
device=device, location=light_location, **light_kwargs
)
phong_renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=SoftPhongShader(device=device, cameras=cameras, lights=lights)
)
return phong_renderer
## custom renderer
class MeshRendererWithDepth(nn.Module):
def __init__(self, rasterizer, shader):
super().__init__()
self.rasterizer = rasterizer
self.shader = shader
def forward(self, meshes_world, **kwargs) -> torch.Tensor:
fragments = self.rasterizer(meshes_world, **kwargs)
images = self.shader(fragments, meshes_world, **kwargs)
return images, fragments.zbuf
def create_depth_mesh_renderer(
cameras: FoVPerspectiveCameras,
image_size: int = 256,
blur_radius: float = 1e-6,
device="cuda",
**light_kwargs,
):
"""
If don't want to show direct texture color without shading, set the light_kwargs as
ambient_color=((1, 1, 1), ), diffuse_color=((0, 0, 0), ), specular_color=((0, 0, 0), )
"""
# We will also create a Phong renderer. This is simpler and only needs to render one face per pixel.
raster_settings = RasterizationSettings(
image_size=image_size,
blur_radius=blur_radius,
faces_per_pixel=17,
)
# We can add a point light in front of the object.
lights = PointLights(
device=device, location=((-0.5, 1., 5.0),), **light_kwargs
)
renderer = MeshRendererWithDepth(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings,
device=device,
),
shader=SoftPhongShader(device=device, cameras=cameras, lights=lights)
)
return renderer