-
Notifications
You must be signed in to change notification settings - Fork 33
/
metricWang.m
58 lines (40 loc) · 997 Bytes
/
metricWang.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function res=metricWang(im1,im2,fim)
% function res=metricWang(im1,im2,fim)
%
% This function implements Wang's algorithms for fusion metric.
% im1, im2 -- input images;
% fim -- fused image;
% res -- metric value;
%
% IMPORTANT: The size of the images need to be 2X.
% See also: NCC.m, mutual_info.m, evalu_fusion.m
%
% Z. Liu [July 2009]
%
% Ref: Performance evaluation of image fusion techniques, Chapter 19, pp.469-492,
% in Image Fusion: Algorithms and Applications, edited by Tania Stathaki
% by Qiang Wang
%
%% pre-processing
im1=normalize1(im1);
im2=normalize1(im2);
fim=normalize1(fim);
[hang,lie]=size(im1);
b=256;
K=3;
%% Call mutual_info.m
% two inputs
NCCxy=NCC(im1,im2);
% one input and fused image
NCCxf=NCC(im1,fim);
% another input and fused image
NCCyf=NCC(im2,fim);
%% get the correlation matrix and eigenvalue
R=[ 1 NCCxy NCCxf; NCCxy 1 NCCyf; NCCxf NCCyf 1];
r=eig(R);
%% HR
HR=sum(r.*log2(r./K)/K);
HR=-HR/log2(b);
%% NCIE
NCIE=1-HR;
res=NCIE;