-
Notifications
You must be signed in to change notification settings - Fork 33
/
metricZheng.m
173 lines (133 loc) · 3.39 KB
/
metricZheng.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function res=metricZheng(im1,im2,fim)
% function res=metricZheng(im1,im2,fim)
%
% This function implements Zheng's algorithm for fusion metric.
% im1, im2 -- input images;
% fim -- fused image;
% res -- metric value;
%
% IMPORTANT: The size of the images need to be 2X.
% See also: evalu_fusion.m
%
% Z. Liu [July 2009]
%
% Ref: A new metric based on extended spatial frequency and its application
% to DWT based fusion algorithms, Information Fusion 8 (2007) 177-192.
% By Yufeng Zheng et al.
%
% This may be a problem with the author's equation (7) and (8). This matlab
% function modified the equations in the paper.
%% pre-processing
im1=double(im1);
im2=double(im2);
fim=double(fim);
%% spatial frequency
[RF,CF]=sf1(fim);
[MDF,SDF]=sf2(fim);
SFf=sqrt(RF*RF+CF*CF+MDF*MDF+SDF*SDF);
RFr=grad(im1,im2,1);
CFr=grad(im1,im2,2);
MDFr=grad(im1,im2,3);
SDFr=grad(im1,im2,4);
SFr=sqrt(RFr+CFr+MDFr+SDFr);
rSFe=(SFf-SFr)/SFr;
res=rSFe;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% sub-function
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [RF,CF]=sf1(im)
[hang,lie]=size(im);
% caculate the spatial horizatal and vertical frequency
% for column
buff=circshift(im,[0,-1]);
diff=im-buff;
misa=diff(:,1:end-1);
misa=misa.*misa;
RF=sqrt(sum(misa(:))/(hang*lie));
% for row
buff=circshift(im,[-1,0]);
diff=im-buff;
misa=diff(1:end-1,:);
misa=misa.*misa;
CF=sqrt(sum(misa(:))/(hang*lie));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [MDF,SDF]=sf2(im)
% caculate diagonal frequency
Wd=sqrt(2)/2;
[hang,lie]=size(im);
result=0;
for i=2:hang
for j=2:lie
result=result+(im(i,j)-im(i-1,j-1)).^2;
end
end
MDF=sqrt(Wd*result/(hang*lie));
result=0;
for j=1:lie-1
for i=2:hang
result=result+(im(i,j)-im(i-1,j+1)).^2;
end
end
SDF=sqrt(Wd*result/(hang*lie));
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
function res=grad(im1,im2,sw)
% caculate the Grad
% sw: 1 -- H
% 2 -- V
% 3 -- MD
% 4 -- SD
[hang,lie]=size(im1);
Wd=sqrt(2)/2;
switch sw
case 1
% for H
% for column
buff=circshift(im1,[0,-1]);
diff=im1-buff;
misa1=diff(:,1:end-1);
buff=circshift(im2,[0,-1]);
diff=im2-buff;
misa2=diff(:,1:end-1);
GradH=max(abs(misa1),abs(misa2));
RFh=GradH.*GradH;
res=sum(RFh(:))/(hang*lie);
case 2
% for row
buff=circshift(im1,[-1,0]);
diff=im1-buff;
misa1=diff(1:end-1,:);
buff=circshift(im2,[-1,0]);
diff=im2-buff;
misa2=diff(1:end-1,:);
GradV=max(abs(misa1),abs(misa2));
RFv=GradV.*GradV;
res=sum(RFv(:))/(hang*lie);
case 3
% MD
result=0;
for i=2:hang
for j=2:lie
buff1=im1(i,j)-im1(i-1,j-1);
buff2=im2(i,j)-im2(i-1,j-1);
buff=max(abs(buff1),abs(buff2));
result=result+buff*buff;
end
end
res=Wd*result/(hang*lie);
case 4
result=0;
for j=1:lie-1
for i=2:hang
buff1=im1(i,j)-im1(i-1,j+1);
buff2=im2(i,j)-im2(i-1,j+1);
buff=max(abs(buff1),abs(buff2));
result=result+buff*buff;
end
end
res=Wd*result/(hang*lie);
otherwise
error('Wrong input for sub-function Grad');
end