forked from jhl13/YAY-TRT-Hackathon-2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx2trt.py
77 lines (67 loc) · 3.07 KB
/
onnx2trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
from glob import glob
import tensorrt as trt
import ctypes
def onnx2trt():
parser = argparse.ArgumentParser()
parser.add_argument("--onnxFile", type=str, default="./onnx_zoo/swinir_lightweight_sr_x2/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2_surgeon.onnx",
help="onnx file path.")
parser.add_argument("--trtFile", type=str, default=None,
help="onnx file path.")
parser.add_argument("--task", type=str, default=None, help='classical_sr, lightweight_sr, real_sr, '
'gray_dn, color_dn, jpeg_car')
parser.add_argument("--FP16", type=bool, default=False,
help="onnx file path.")
args = parser.parse_args()
onnxFile = args.onnxFile
trtFile = args.trtFile
if trtFile is None:
trtFile = onnxFile.replace(".onnx", ".plan")
print(f"onnxFile: {onnxFile}")
print(f"trtFile: {trtFile}")
PluginPath = "./plugin/"
soFileList = glob(PluginPath + "*.so")
print(soFileList)
logger = trt.Logger(trt.Logger.WARNING)
trt.init_libnvinfer_plugins(logger, '')
for soFile in soFileList:
ctypes.cdll.LoadLibrary(soFile)
builder = trt.Builder(logger)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(EXPLICIT_BATCH)
parser = trt.OnnxParser(network, logger)
parser.parse_from_file(onnxFile)
config = builder.create_builder_config()
# config.max_workspace_size = 12 << 30
profile = builder.create_optimization_profile()
print("==== inputs name:")
for i in range(1):
print(f"Input{i} name: ", network.get_input(i).name)
inputTensor1 = network.get_input(0)
if args.task == "classical_sr" or args.task == "lightweight_sr":
profile.set_shape(inputTensor1.name, [1, 3, 63, 57], [1, 3, 256, 256], [1, 3, 256, 256]) # SR
elif args.task == "real_sr":
profile.set_shape(inputTensor1.name, [1, 3, 120, 120], [1, 3, 640, 512], [1, 3, 640, 512]) # Real SR
elif args.task == "color_dn":
profile.set_shape(inputTensor1.name, [1, 3, 321, 321], [1, 3, 500, 500], [1, 3, 500, 500]) # Denoising
elif args.task == "jpeg_car":
profile.set_shape(inputTensor1.name, [1, 1, 469, 434], [1, 1, 518, 518], [1, 1, 770, 721]) # JPEG Compression
else:
raise NotImplementedError
config.add_optimization_profile(profile)
config.profiling_verbosity = trt.ProfilingVerbosity.VERBOSE
config.set_timing_cache(config.create_timing_cache(b""), ignore_mismatch=False)
if args.FP16:
config.set_flag(trt.BuilderFlag.FP16)
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
config.clear_flag(trt.BuilderFlag.TF32)
engineString = builder.build_serialized_network(network, config)
try:
with open(trtFile, 'wb') as f:
f.write(engineString)
print("export .plan successful")
except:
print("export .plan fail")
# 将没法转换的子图单独保存
if __name__ == '__main__':
onnx2trt()